Abstract
An oxidative thermal regeneration process was developed and evaluated for its potential applicability in several environmental areas. The feasibility of the process is affected strongly by the gradual carbon loss, energy consumption, physical changes of carbon, and effective destruction efficiency of adsorbed materials during the regeneration. The aim of the study is to determine the optimum conditions to maintain acceptable destruction efficiency for adsorbed organics, controlling oxidant flow rate. Prior to its applications, various preliminary tests were carried out to determine the effects of experimental parameters on the process. The tests performed were reaction temperature, carbon loss, surface area, surface structure, and adsorptive property. The results of these tests show that the parameters are dependent on oxidant flow rate, and suggest that the process is comparable and, in some ways, possibly superior to conventional regeneration techniques because the oxidative process is a single step and less energy intensive.