DOI QR코드

DOI QR Code

Molecular Dynamics Simulation of Liquid Alkanes. Ⅱ. Dynamic Properties of Normal Alkanes : n- Butane to n- Heptadecane

  • Published : 1997.05.20

Abstract

In a recent paper[Bull. Kor. Chem. Soc. 17, 735 (1996)] we reported results of molecular dynamic (MD) simulations for the thermodynamic and structural properties of liquid n-alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the dynamic properties of liquid n-alkanes using the same models. The agreement of two self-diffusion coefficients of liquid n-alkanes calculated from the mean square displacements (MSD) via the Einstein equation and the velocity auto-correlation (VAC) functions via the Green-Kubo relation is excellent. The viscosities of n-butane to n-nonane calculated from the stress auto-correlation (SAC) functions and the thermal conductivities of n-pentane to n-decane calculated from the heat-flux auto-correlation (HFAC) functions via the Green-Kubo relations are smaller than the experimental values by approximately a factor of 2 and 4, respectively.

Keywords

References

  1. Bull. Kor. Chem. Soc. v.17 Lee, S. H.;Lee, H.;Pak, H.;Rasaiah, J. C.
  2. J. Chem. Phys. v.19 Green, M. S.
  3. J. Chem. Phys. v.20 Green, M. S.
  4. J. Chem. Phys. v.22 Green, M. S.
  5. J. Phys. Soc. Japan v.12 Kubo, R.
  6. Bull. Kor. Chem. Soc. v.12 Moon, C. B.;Moon, G. K.;Lee, S. H.
  7. Bull. Kor. Chem. Soc. v.12 Lee, S. H.;Moon, G. K.;Choi, S. G.
  8. J. Chem. Phys. v.79 Jorgensen, W. L.;Chandrasekhar, J.;Madura, J. D.;Impey, R. W.;Klein, M. L.
  9. Mol. Phys. v.56 Jorgensen, W. L.;Madura, J. D.
  10. Phys. Rev. A. v.2 Evans D. J.;Hoover W. G.;Failor B. H.;Moran B.;Ladd A. J. C.
  11. Discuss. Faraday Soc. v.66 Ryckaert J. P.;Bellemans A.
  12. J. Chem. Phys. v.84 Wielopolsky P. A.;Smith, E. R.
  13. Computer Simulation of Liquids Allen M. P.;Tildesley D. J.
  14. J. Chem. Phys. v.52 Andersen H. C.
  15. Computer. Phys. Commun. v.62 Chynoweth S.;Klomp U. C.;Scales L. E.
  16. J. Chem. Phys. v.95 Chynoweth S.;Klomp U. C.;Michonpoulos Y
  17. J. Chem. Soc., Faraday Trans. v.88 Berker A.;Chynoweth S.;Klomp U. C.;Michopoulos Y.
  18. Perkin Trans. v.2 White D. N. J.;Boville M. J.
  19. Numerical Initial Value Problems in Ordinary Differential Equation Gear C. W.
  20. J. Chem. Phys. v.84 Edberg R.;Evans D. J.;Morris G. P.
  21. Viscosity of Dense Fluids Stephan K.;Lucas K.
  22. CRC Handbook of Chemistry and Physics (63rd ed.) Weast R. C.;Astle M. J.
  23. Chem. Phys. Lett. v.101 Marechal G.;Ryckaert J. P.
  24. J. Chem. Phys. v.86 Edberg R.;Morriss G. P.;Evans D. J.
  25. Mol. Sim. v.16 Lee S. H.;Cummings P. T.
  26. J. Chem. Phys. v.95 Chynoweth S.;Klomp U. C.;Michopoulos Y.
  27. J. Chem. Phys. v.102 Mundy C. J.;Siepman, J. I.
  28. J. Chem. Phys. v.104 Cui S. T.;Cummings P. T.;Cochran H. D.