Abstract
In a recent paper[Bull. Kor. Chem. Soc. 17, 735 (1996)] we reported results of molecular dynamic (MD) simulations for the thermodynamic and structural properties of liquid n-alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the dynamic properties of liquid n-alkanes using the same models. The agreement of two self-diffusion coefficients of liquid n-alkanes calculated from the mean square displacements (MSD) via the Einstein equation and the velocity auto-correlation (VAC) functions via the Green-Kubo relation is excellent. The viscosities of n-butane to n-nonane calculated from the stress auto-correlation (SAC) functions and the thermal conductivities of n-pentane to n-decane calculated from the heat-flux auto-correlation (HFAC) functions via the Green-Kubo relations are smaller than the experimental values by approximately a factor of 2 and 4, respectively.