DOI QR코드

DOI QR Code

A Novel Synthetic Route to Highly Cross-Linked Poly(vinyl ethers): Ⅲ. Synthesis and Free Radical Polymerization of Aryloxyethyl Vinyl Ethers Having an Electron Acceptor in ortho- or meta-Position

  • Published : 1997.03.20

Abstract

ο-(2-Vinyloxyethoxy)benzylidenemalononitrile (3a) and methyl ο-(2-vinyloxyethoxy)-benzylidenecyanoacetate (3b), m-(2-vinyloxyethoxy)benzylidenemalononitrile (4a), and methyl m-(2-vinyloxyethoxy)benzylidenecyanoacetate (4b) were prepared by the condensation of ο-(2-vinyloxyethoxy)benzaldehyde (1) and m-(2-vinyloxyethoxy)benzaldehyde (2) with malononitrile or methyl cyanoacetate, respectively. Bifunctional vinyl ether monomers 3a and 3b polymerized quantitatively with radical initiators in γ-butyrolactone solution at 65 ℃, while meta-isomers 4a and 4b gave lower yields of polymers under the same conditions. The polymers 5-6 obtained from the monomers 3-4 were insoluble in common solvents due to cross-linking. Under the same polymerization conditions ethyl vinyl ether polymerized well with model compounds ο-methoxybenzylidenemalononitrile 7a, methyl ο-methoxybenzylidenecyanoacetate 7b, m-methoxybenzylidenemalononitrile 8a, and methyl m-methoxybenzylidenecyanoacetate 8b, respectively, to give 1:1 alternating copolymers 9-10 in high yields. Cross-linked polymers 5-6 showed a thermal stability up to 300 ℃, and showed a double phase degradation pattern in their TGA thermograms. Polymers 5-6 showed broad endothermic bands around 75-110 ℃ without any characteristic Tg peaks in DSC thermograms. Alternating copolymers 9-10, except copolymer 9b were soluble in common organic solvents. The inherent viscosities of polymer 9-10 were in the range of 0.35-0.62 dL/g. Polymer films cast from acetone solution were cloudy and tough and Tg values obtained from DSC thermograms were in the range of 118-165 ℃.

Keywords

References

  1. Macromolecules v.8 Stille, J. K.;Chung, D. C.
  2. J. Polym. Sci., Polym. Lett. Ed. v.18 Cho, I.;Lee, J. Y.
  3. Macromolecules v.16 Cho, I.;Lee, J. Y.
  4. Macromolecules v.16 Cho, I.;Lee, J. Y.
  5. J. Polym. Sci., Part A: Polym. Chem. Ed. v.25 Lee, J.-Y.;Cho, I.
  6. J. Polym. Sci., Polym. Lett. Ed. v.21 Cho, I.;Lee, J.-Y.
  7. Polym. Bull. v.5 Florianczyk, T.;Sullivan, C.;Janovic, Z.;Vegl, O.
  8. J. Polym. Sci.: Polym. Chem. Ed. v.21 Xi, F.;Bassett, W.;Vogl, O.
  9. J. Am. Soc. v.84 Williams, J. K.;Wiley, D. W.;McKusick, B. C.
  10. J. Am. Chem. Soc. v.97 Hall, Jr. H. K.;Ykman, P.
  11. Tetrahedron Lett. v.23 Hall, Jr. H. K.;Rasoul, H. A. A.;Gillard, M.;Abdelkader, M.;Nogues, P.;Sentman, R. C.
  12. Acc. Chem. Res. v.23 Hall, Jr. H. K.;Padias, A. B.
  13. J. Polym. Sci., Part A v.2 Kresel, M.;Garbratski, U.;Kohn, D. H.
  14. J. Appl. Polym. Sci. v.14 Gilath, A.;Ronel, S. H.;Shmueli, M.;Kohn, D. H.
  15. J. Polym. Sci., A-1 v.7 Ronel, S. H.;Shmueli, M.;Kohn, D. H.
  16. J. Polym. Sci., Polym. Chem. Ed. v.12 Lieberson, A.;Kohn, D. H.
  17. J. Polym. Sci., Polym. Chem. Ed. v.21 Kharas, G.;Kohn, D. H.
  18. J. Polym. Sci., Polym. Chem. Ed. v.22 Kharas, G.;Kohn, D. H.
  19. J. Appl. Polym. Sci. v.40 Angelorici, M. M.;Kohn, D. H.
  20. Trends Polym. Sci. v.1 Tanaka, H.
  21. Trends Polym. Sci. v.4 Tanaka, H.
  22. Polym. Bull. v.36 Lee, J-Y.
  23. Bull. Korean Chem. Soc. v.17 Lee, J.-Y.;lee, H.-J.;Kim, M.-Y.
  24. Org. Syn. Coll. v.4 Moore, A. H. F.
  25. Nonlinear Optical and Electroactive Polymers Griffin, A. C.(ed.);Bhatti, A. M.(ed.);Hung, R. S.(ed.);Prasad, P. N.(ed.);Ulrich, D. R.(ed.)
  26. J. Am. Chem. Soc. v.50 Corson, B. B.;Stoughton, R. W.
  27. Polym. Bull. v.33 Lee, J.-Y.