Abstract
In the course of magnetic study on several perovskite-type oxides, A2Fe(Ⅲ)BO6 (A = Ca, Sr, Ba and B = Sb, Bi), we have observed a strong irreversibility in their dc-magnetizations. When the structural data and the Mossbauer spectra are considered, such an irreversibility is to be associated with some competitions between the nearest-neighbors (nn) and the next-nearest-neighbors (nnn) in their magnetic sublattices. Particularly, the Mossbauer spectra indicate that Sr2FeBiO6 of cubic perovskite-structure is apparently well ordered crystalline compound. Nontheless this antiferromagnet shows a magnetic property which resembles that of a spin-glass. The strong history dependence is observed below 91 K and the irreversible magnetic behavior is also observed from the measurement of hysteresis loops at 10 K after zero-field-cooled (zfc) and field-cooled (fc) processes. Considering the nn and the nnn superexchanges of almost same order in ordered perovskite, it is proposed that there exists a competition and cancellation of antiferromagnetic and ferromagnetic superexchange between the nearest-neighbors and the next-nearest-neighbors, thus introducing a certain degree of frustration.