Synthesis of Mesoionic Anhydro-3-mercapto-1-methyl-8-oxo-7,8-dihydro-1,2,4-triazolo[4,3-a]pyrazine-1-ium Hydroxide

Kee-Jung Lee*, You-Suk Lee, and Dae Ock Choi ${ }^{\dagger}$
Department of Industrial Chemistry, Hanyang University, Seoul 133-791, Korea
${ }^{\dagger}$ Department of Chemistry, Suncheon University, Suncheon 540-742, Korea

Received September 4, 1997

As part of an investigation on the synthesis of cephalosporin antibiotics, ${ }^{1,2}$ we needed various heterocyclic thiols, in particular, of bridgehead-nitrogen heterocycles containing the $1,2,4$-triazole moiety, and we recently reported ${ }^{3,4}$ the novel synthesis of 8 -oxo-3-thioxo-2,3,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyrazines 2 based upon the simple annulation of the pyrazinone ring onto the triazole ring precursor 1 .

Another method reported ${ }^{5,6}$ for the preparation of these ring systems is based on the annulation of the triazole ring onto $2,3(1 H, 4 H)$-pyrazinedione 3 precursor. This method is based upon the reaction of 3-chloro- $2(1 H)$-pyrazinone ${ }^{7} 4$ with hydrazine to give the 3-hydrazinopyrazinone, further treatment with carbon disulfide under basic conditions to give the corresponding 8 -oxo-3-thioxo- $2,3,7,8$-tetrahydro-1,2, 4-triazolo[4,3-a]pyrazines 2.

We herein report a synthesis of new mesoionic, anhydro-3-mercapto-1-methyl-8-oxo-7,8-dihydro-1,2,4-triazolo[4,3-a] pyrazine-1-ium hydroxide 6 by using the latter methodology (Scheme 1). While a great number of monocyclic mesoionic compounds are known, ${ }^{8}$ congeners containing fused rings are much less common. ${ }^{9}$

The reaction of 3 -chloro- $2(1 H)$-pyrazinone 4 with methylhydrazine was carried out in dioxane at room temperature and gave a regioselective product, 3-(1-methylhydrazino$2(1 H)$-pyrazinone 5 in good yield. Treatment of 5 with carbon disulfide in the presence of potassium hydroxide in ethanol at reflux temperature for 2 h afforded a mesoionic, anhydro-3-mercapto-1-methyl-8-oxo-7,8-dihydro-1,2,4-tri-azolo[4,3-a]pyrazine-1-ium hydroxide 6.

The structural elucidation of compounds 6 was accomplished on the basis of spectral data. Compounds 6 showed in the IR spectral absorption due to the $\mathrm{C}=\mathrm{O}$ stretching at 1687 cm^{-1}, together with the characteristic absorption of the $\mathrm{C}=$ N bond at $1640-1641 \mathrm{~cm}{ }^{1}$. Mass spectra showed the molecular ion peak as a base peak. The characteristic ${ }^{1} \mathrm{H}$ NMR absorptions of the N-methyl protons at deshielded region $\delta 4.48-4.51$ were indication that mesoionic compounds had made. ${ }^{9}$

Experimental Section

All reagents were of commercial quality from freshly opened containers. Reagent quality solvents were used without further purification. Analytical TLC plates and silica gel ($230-400$ mesh) were purchased from EM Reagents. Melting points were taken using a Electrothermal melting point apparatus and are uncorrected. Mass spectra were obtained using a Hewlett Packard model 5985 B spectrometer. IR spectra were recorded on a Analect FX 6160 Infrared spectrophotometer. The NMR spectra were measured on a Vari-
an Gemini 300 spectrometer.
3-Chloro-1-methyl-2($1 H$)-pyrazinone (4a) and 3-chloro-1-ethyl-2($1 H$)-pyrazinone (4 b) were prepared following the literature procedure. ${ }^{7}$

1-Methyl-3-(1-methylhydrazino)-2(1H)-pyrazinone (5a). To a stirred solution of 3-chloro-1-methyl$2(1 H)$-pyrazinone ($4 \mathrm{a} ; 3.56 \mathrm{~g}, 24.5 \mathrm{mmol}$) in dioxane (30 mL) was added methylhydrazine ($4.61 \mathrm{~g}, 98 \mathrm{mmol}$) in a dropwise manner at room temperature. After stirring for 30 \min at r.t., the mixture was neutralized with potassium carbonate ($5.0 \mathrm{~g}, 36.1 \mathrm{mmol}$). Dichloromethane (50 mL) was then added and the mixture was dried $\left(\mathrm{MgSO}_{4}\right)$ and the or-

3

4
MeNHNH2 dioxane, r.t. 30 min.

5a, 82% b. 85%

1

Ref. 3 and 4
$5 \% \mathrm{HCl}$
reflux

2

62.51%
b. 48%

Scheme 1.
ganic phase was separated by suction, concentrated to dryness under reduced pressure. The residual crystalline solid was separated by filtration using petroleum ether to give 5a; yield $3.08 \mathrm{~g}(82 \%)$; mp $116-118{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta$ 3.47 (s, 3H, $\mathrm{CH}_{3} \mathrm{NN}$), $3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 4.70$ ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{NH}_{2}\right), 6.62(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}, \mathrm{CH}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}$, CH).

1-Ethyl-3-(1-methylhydrazino)-2(1H)-pyrazinone (5b). With the same procedure for the preparation of $\mathbf{5 a}$, compound $\mathbf{5 b}$ was obtained by the treatment of 3-chloro-1-ethyl-2($1 H$)-pyrazinone ($4 \mathrm{~b} ; 3.88 \mathrm{~g}, 24.5 \mathrm{mmol}$) with methylhydrazine ($4.61 \mathrm{~g}, 98 \mathrm{mmol}$): yield 3.52 g (85%); mp $45-46{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.33(t, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NN}\right), 3.87(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.70 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $6.55(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}, \mathrm{CH})$, $6.90(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}, \mathrm{CH})$.

Anhydro-3-mercapto-1,7-dimethyl-8-oxo-7,8-di-hydro-1,2,4-triazolo[4,3-a]-pyrazin-1-ium hydroxide (6a). To a stirred solution of 1 -methylhydrazinopyrazinone ($5 \mathrm{a} ; 0.98 \mathrm{~g}, 6.35 \mathrm{mmol}$) in ethanol (30 mL) were added dropwise carbon disulfide ($1.15 \mathrm{~mL}, 19.0 \mathrm{mmol}$) and 20 mL of ethanolic potassium hydroxide solution (0.53 $\mathrm{g}, 8.30 \mathrm{mmol}$) at room temperature. The mixture was heated at reflux temperature for 2 h . After cooling, the precipitated solid, which was gradually separated during the reaction, was filtered off, washed with ethanol (5 mL), ether (10 mL) and dried in vacuo to give a mesoionic compound 6a as a pale yellow solid; yicld $0.63 \mathrm{~g}(51 \%)$: mp $274{ }^{\circ} \mathrm{C}$ (decomp.); MS (70 cV) m/z $196\left(\mathrm{M}^{+}, 100\right), 128$ (30), 96 (28), 64 (45); IR (KBr) 1687, 1640, 1579, 1494, 1428, 1397, 1363, 1244, $1165,986 \mathrm{~cm}{ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ $\left.\mathrm{CF}_{3} \mathrm{COOH}\right) \delta 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 4.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}^{+}\right), 7.20$ (d, $1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{CH}), 7.54(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{CH})$.

Anhydro-3-mercapto-7-ethyl-1-methyl-8-oxo-7,8-dihydro-1,2,4-triazolo[4,3-a]-pyrazin-1-ium hydroxide (6b). With the same procedure for the preparation of $6 a$, compound $6 b$ was obtained by the treatment of 1 methylhydrazinopyrazinone ($5 \mathbf{b} ; 1.07 \mathrm{~g}, 6.35 \mathrm{mmol}$) with carbon disulfide ($1.15 \mathrm{~mL}, 19.0 \mathrm{mmol}$) and 20 mL of ethanolic potassium hydroxide solution ($0.53 \mathrm{~g}, 8.30 \mathrm{mmol}$):

6 b ; yield $0.64 \mathrm{~g}\left(48 \%\right.$); mp $259-260^{\circ} \mathrm{C}$ (decomp.); MS (70 $\mathrm{eV}) \mathrm{m} / \mathrm{z} 210\left(\mathrm{M}^{+}, 100\right), 152(83), 124$ (79), 123 (23), 96 (54), 69 (49), 68 (42); IR (KBr) 1687, 1641, 1575, 1493, 1444, 1378, 1341, 1238, 1161, $999 \mathrm{~cm}{ }^{\text {'; ' }}$ 'H NMR ($\mathrm{CDCl}_{3}+$ $\left.\mathrm{CF}_{3} \mathrm{COOH}\right) \delta 1.42\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.12(\mathrm{q}, 2 \mathrm{H}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}^{+}\right), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=6.0$ $\mathrm{Hz}, \mathrm{CH}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{CH})$.

Acknowledgment. This research was supported by grants from The Hallym Academy of Sciences, Hallym University and from Hanyang University (1997).

References

1. Lee, K.-J.; Choi, D. O.; Park, H. Korean J. of Med. Chem. 1991, 1, 69.
2. Lee, K.-J.; Park, H.; Kim, S. Korean J. of Med. Chem. 1991, $I, 30$.
3. Lee, K.-J.; Kim, S.; Um, H.; Park, H. Synthesis 1989, 638.
4. Lee, K.-J.; Lee, Y.-S. Bull. Korean Chem. Soc. 1993, 14, 755.
5. Bhattacharya, B. K. J. Heterocycl. Chem. 1986, 23, 113.
6. Koren, B.; Stanovnik, B.; Tisler, M. Heterocycles 1985, 23, 913.
7. Montavon, M.; Reiner, R. US Patent 4348518 (1982), Hoffman La Roche Inc.; C.A. 1983, 98, 71813.
8. (a) Ohta, M.; Kato, H. In Nonbenzenoid Aromatics; Snyder, J. P., Ed.; Academic Press: New York, U.S.A., 1969, pp 117-248. (b) Stewart, F. H. C. Chem. Rev. 1964, 64, 129. (c) Ollis, W. D.; Ramsden, C. A. Adv. Heterocycl. Chem. 1976, 19, 3. (d) Newton, C. G.; Ramsden, C. A. Tetrahedron 1982, 38, 2965.
9. (a) Preston, P. N.; Turnbull, K. J. Chem. Soc., Perkin Trans. 1 1977, 1229. (b) Burson, W. C.; Jones, D. R.; Tumbull, K.; Preston, P. N. Synthesis 1991, 745. (c) Molina, P.; Arques, A.; Velasco, M. D.; Villalgordo, J. M. Synthesis 1988, 729. (d) Farras, J.; Fos, E.; Ramos, R.; Vilarrasa, J. J. Org. Chem. 1988, 53, 887. (e) Hamby, J. M.; Bauer, L. J. Heterocycl. Chem. 1987, 24, 1013.
