international Journal of Management Science
Vol 3, No 2, November 1997

SPECIFICATION AND CONTROLLER SYNTHESIS FOR THE
HIERARCHICAL CONTROL OF FMS*

JIN-TAE CHANG

Consulting Operations, Samsung Data Systems, Korea

HUN-TAI KIM

Department of Industrial Engineering, Daejin University, Korea

SUK-HO KANG**

Department of Industrial Engineering, Seoul National University, Korea

ABSTRACT

Developing FMS controllers has been a difficult problem largely because of the variety of
the system configuration. The purpose of this paper is to develop a method of building an
FMS controller. The controller consists of control module and execution module. A
hierarchically layered structure of these modules is proposed. The control module generates
abstract-level execution requested by identifying a set of activities that can be executed
without creating any irregular state. The execution module transmits the requests to
physical device controllers and reports back the completion of the requests to the control
module. Both of these two modules use Petri Net-based models. In this paper, a
controllable Petri Net model is automatically synthesized from declarative specifications
provided by a user. An execution Petri Net model for the execution module is designed to
ensure the consistency between the control module and the real target system. The
controller operates in MMS on TCP/IP and UNIX environment.

1. INTRODUCTION

An important perspective is that the successful implementation and operation of
an FMS often lies on the development of safe and effective control software[5,
6). An FMS would be composed of several components provided by different

* This research was supported by Korea Science and Engineering Foundation grant
941-1000-021-2.
** Dept. of LE. S.N.U. San 56-1 Shillim-Dong Kwanak-Gu Seoul 151-742 Korea.

71

79 CHANG, KIM AND KANG

vendors. Consequently, it has many variations in its configurations. This
complexity and diversity can be partly managed by a formal and generic
control model.

Petri Nets has largely been studied as 'a control model for FMSs. But to
build an Petri Control Model is very hard work and to test completeness of the
model is also difficult [1,2,4,7,8]. The purpose of this research is to develop a
method to synthesize a Petri Net control model for an FMS directly from
declarative user specifications that guarantee the safe operations of the system.
The proposed controller consists of control module, execution module and
deadlock avoidance module.

This paper introduce a method to generate the control module using
contents of the informations that users support. The structure of the execution
module is presented. The role of the execution module is to maintain integrity
between the control module and physical FMS composed of MMS devices. MMS
is sets of ISO/OSI protocol supporting manufacturing processes|3).

The format of this paper is as follows. First, overall control structure is
described in chapter 2. Then required informations to build the control model
are suggested in Chapter 3. A method to synthesize a controllable Petri Net is
described in chapter 4. Execution structure is defined in chapter 5. Finally,
conclusions in the chapter 6.

2. OVERALL STRUCTURE

Figure 1 describes the overall structure of proposed FMS contoller. The
controller keeps state informations and send scheduler a set of available
activities that can be executed without creating any irregular states. Transition
chosen by scheduler is transformed to physical operations by the controller and
the executions of them are managed.

The controller consists of deadlock avoidance module, Ct»IPPN (Controllable
Production Petri Net), eXePPN (Execution Production Petri Net), and COM
(Composite Operation Monitor).

The roles of CtrIPPN are as follows.

1) To maintain a system status in the control model and find the set of

physically executable operations.

2) To receive a safe transition from the deadlock avoidance module.

3) To command the operation of selected transition and uncontrollable

transitions to execution module.

eXePPN maintains integrity between logical information of Ci/PPN and

HIERARCHICAL CONTROL OF FMS 73

physical FMS system via COM. COM converts the logical information of the
eXePPN to operation information that can be recoginized by MMS.

Addressed in this paper are those elements in the shaded region which
includes C#7IPPN and eXePPN. Required informations and method to

synthesize Ct#/[PPN and the structure of eXePPN are detailed in following
three chapters.

Scheduler

3

Deadlock Avoidance Module

- e e ———— o ——a,

\ MMSI ’
; return ’
Mmoo Setvice _ B -
FMS controller MMSGate t: selected transition
y CT: firable transition
{' CTe: controlfed fireable transition
UuT: uncontrollable transition
VMD COM: composite operation monitor

Figure 1. Overall control structure

3. REQUIRED INFORMATIONS

Developing a proposed controller requires some informations that should be
indetified by user such as the components of the system, parts, operations and
part route, moving paths between locations, and part programs. To recognize

the information given by user, six domains are defined. Each domain can have
subdomains.

74

CHANG, KIM AND KANG

Load/Unload station

Machining Center

NC Lathe

Washing Station

Buffer Station

Conveyor

Robot

Programmable Logic Controller

For convenience shake, we will use an FMS example described in figure 2.
N1 and N2 are NC lathes, M1 and M2 are machining centers. Il and I2

represent input buffer station for each machining center, Ol and O2 are output

%

buffer station.

input and output buffer station for N1 and B2 is for N2. Robot R sets up a

part on Bl or B2 to N1 or N2. W is a washing station and B3 is a buffer

station for

Figure 2. An FMS example

W. 1/O is an load/unload station.

Each maching center controls each buffer station. Bl is an

C1 is a conveyor. PLC1 is a

programmable logic controller that governs C1, B1, B2, and B3.

3.1. Resources

Resources mean production equipments such as machines, material handlers,
buffers or storages, and controllers. Each resource has a different name and can
retain only one part or pallet at a time. RSC is a domain for resources. RSC

has subdomains as follows.

HIERARCHICAL CONTROL OF FMS 75

MH: to represent material handlers such as a robot for moving a part,
conveyor, and AGVs. In our example, R, C1, I1, 12, O1, O2, B3 are in MH .
But Bl and B2 are not in MH .

MF: to represent resources that process the operatations of part routes.
Again, MF has subdomains of MF_W_P and MF_W_O_P . If the part
should be manufactured fixed on a pallet at a machine, this machine is in
MFEF _W_P domain. If not, this machine is in MF_W_O_P domain. In our
example I/O, M1, M2, W are MF_W_P domain resources and N1, N2 are
MF_W_O_P domain resources. In the case of I1, 12, O1, 02, B3, they are

in both MF and MH domain. This kind of resources are classified into MFH
domain.

ST: to represent resources that can be used as a part storage. In our
example, Bl, B2, B3, I1, 12, O1, O2 are included in S7 domain.

CTL: to represent programmable logic controller or machine controller
itself. C(RSC) is a function of resource to map corresponding controller. In our
example, N1, N2, M1, M2, I/O, W, PLC1 are in CTL domain. C(R)=R,
C(Cl)= PL(1, C(Bl)= PL(C1, C(B2)= PLC1, C(B3)= PL(Cl,
C(Nl)=N, CN)=MN2, CI/IO)=10, C(M1)=Ml, C(M2)=M2,
Cl)=M1, C(I2)=M2, C(O1)=M1, C(0O2)=M2.

3.2 Unit Paths

Let’s define effective location first. Effective location is a place on which part
or pallet can reside excluding the resource included in MH or CTL domains.
EL is a set of all effective locations. R(FL,) means a corresponding resource

for effective location EL,. A unit path is a path between two -effective
locations that can be directly connected by a material handling resources.
U_PATH represents domain for unit paths. #p(EL;, EL; is a unit path
between effective location FEL, and FEL;. A path is a set of sequences that
consist of stream of unit .paths. Let a path between FEL; and EL; be
path(EL,;, EL;). In our exmple, a path from I/O to N1 is as follows.
path(I/O, N1)= ((up(1/ O, Bl), up(Bl, N1)), Cup(1/ O, B2), up(B2, N1))).

U_PATH has two subdomains. If we can get a information from the
resource A that a part is transfromed from EL; to a material handling resource

76 CHANG, KIM AND KANG

Table 1. Unit Paths of the example FMS
* represents the unit path is included in U_PATH_ACK domain

. “lyo|Br | B2 B3 | Nl | N2 | W M| Tl |oO1L|M2| 2|02
om

wl 121912 7 7
g | O c1

52 | O c1

ms |G| 1| B3 CI Ci
N1 R | R

N2 R | R

W B3

ML o1

I I

o | & C1 ci
M2 02
I2 12

2 | O c1 | C1

and another part can occupy the resource A, the unit path is included in
U_PATH ACK domain. In the other case the unit path is in included in
U_PATH_NO_ACK . Ruy(up;) represents a MH domain resource in the
case of wup,=eU_PATH. Table 1 illustrates the unit paths of the example
FMS.

3.3 Parts

PART is a domain for part.

3.4 Operations

Operation is a logical term that represents a set of manufacturing processes in
a certain resource. Each operation is unique in the same system. However, this
does not mean that every operation consists of different part programs. OP is
a domain for operations. Two type of subdomains are defined. One is T _OP
and the other is (O_OF. T _OP domain is concerned with part moving
operations. An operation included in 7 _OP domain is defined as a tuple

HIERARCHICAL CONTROL OF FMS 77

(op, rsc, up, pp, next_op,prg). op is a operation identifier. »sc is a resource
that operation is undertaken. #p is an unit path. pp is a part route. next_op
is a succeeding O_ OP domain operation. prg is a part program. O_OP is a
subdomain for manufacturing processes. An operation included in O_ OP
domain is defined as (op, 7sc, prg) .

3.5 Part Programs

We assume that a part program for an operation is not processed in two
machines at the same time. P is a domain for part programs. An operation
consists of a set of part programs. These part programs have partial orders. Let
Ir is an index set of part programs in P . We define prg,= (Vg Eng),
kelp as a ADG(Acyclic Directed Graph) that represents partial orders between
part programs. V,, is a set of nodes for part programs and E,, is a set of
directed arcs representing direct precedence between part programs. veV,,,

contains a information for the controller which processes the part program.
Figure 3 decribes a part program graph for an 7_ OP domain operation.

NC open_door Robot gripper_change

|

NC chuck_out

T~

Robot change_chuck

|

Robot gripper_change

|

Robot transport part & reset

|

NC close_door

Figure 3. An example part program graph for T_ OP domain operation

3.6 Part Routes

A part routes is a sequence of O_ OP domain operations for a part. PR is
a domain for part route. There are partial orders between operations in a part
route. In this paper, a part route is represented as a OR-graph. Let
PR;=(Vy op, Eo_op) be a graph for the part route of part;, where jelpp

and Ipp is a set of index of part routes in PR. Vg gpis a set of nodes for

78 CHANG, KIM AND KANG

PR,
©
& o—~®
()
PR,
@)= —= (=)
PR,

Figure 4. Part routes of the example FMS

O_ OP domain operations and E, op is a set of directed arcs representing

the precedence between operations in a part route. Figure 4 represents part
routes in the example FMS. Oy, Ou, Os, Oun are loading operations at 1/0
station. Ois, Oss, O47 are unloading operations at I/O station. O3, Og are
manufacturing operations at N1. O, Oo; are operations at N2. Osy, Og are
opeations at M1. Oss, Ous, O are operations at M2. O3, O1s, Oas, Oz, Oug,
Os are washing operations at W.

4. Control Model

In this chapter, a method to develop an Ctr/PPN is described.

4.1 Unit path Graph

AG=(V, ¢, E4s;) is an Accessibility Graph that represents an unit path

between effective locations. This can be built from unit paths and effective
location informations. Physical moving path of a part can be found using this
graph.

ve V4 is a node that represents an effective location, /zbel(v) mean the

name of the effective location. wv=V,; has an operation information of

HIERARCHICAL CONTROL OF FMS 79

Figure 5. AG of the example FMS

O_ OP domain and op(v) is the name of p=V,,. e=E4; is an arc defined
when a unit path exists between the effective locations. label(e) is name of an

MH domain resource. Figure 5 is an AG of the example.
4.2 Part move path graph

LG;=(Vy,Ers), j€Ip is a graph that represents the move path for each
part P; that has a part route PR;. LG, is created based on the PR; and
AG. L = U jer, LGj. vEV.c is a node that represents an effective

location and contains the resource information for that location. For each
us Vg, label(v) = label(u) and op(v) = op(u). e=E;; represents a unit path
to an effective location that is required to process the next operation in the
part route. For each asE,;, label(e)= label(a). pl;c(e) retains the index
information of the part route, that is, plig(e)=j for e€E;;. LG;=

(Vig,, Erg) can be generated by procedure 1.

Procedure 1. to create LG

step 1. Define ve Vg, for each we Vpp . label(v)= label(u) and op(v) =
op)

step 2. For each (v, e;, v,), v 05 Vi, e;€Epm of AG,

80 CHANG, KIM AND KANG

Figure 6. LG of the FMS example

find path(labelv,), label v,)) ={path,, ..., path;} such that,
pathy= up(label(v,),E.), up(Ey, E), . . up(E, , label(vy), k={1,..., I.

step 3. For each k={1,...,/}, create node ¢, between v, and v, such that
label(v,) =E, ,r={1,...,n}, and connect arc e,,e,, e, for each
between v, and v,, v,and v,, v, and v,,;, (r={1,...,2—1}).

label(ey,) = up(label(v,, E)), labeley,) = up(E,,, label(v,)),
labelep) = up(E;, Ey,). plrc(e)=j for each e.

Figure 6 represents the LG of the example. Double circles, squares
surrounded by circles, and circles represents effective locations of which
resources are included in MF_W_P, MF_W_O_P, ST for each.

4.3 Production Petri Nets : PPN

PPN called as production petri net is a Petri Net whose places mean effective
locations and transitions represent operations. This can be formalized as follows.

PPN;=(Pppy, Tppw,, Ipen;, Open)

HIERARCHICAL CONTROL OF FMS 81

Pppy= P = PELMFUPELST
})ELMF= PELMF_WJUPELMF_W_O_P
PPN= ;... PPN;

PPN; is transformed from LG;. Pppy is a set of places and Tppy is a set of
transitions. Ippy is a set of input arcs from transitions to places and Oppy is
from places to tramsitions. Pg;,. .., Prr, .., Pr, are sets of places for
each MF_W_P, MF_W_O_P, ST domain resources. Each place has a
information about the efftective location for each node of LG; and each
transition has informations about the unit path and the index for part route.
I(t;, py) is an input arc from place p, to transition #. O(¢;p,) is an input
arc from transition #; to place p,. - ¢ is a set of places that have I(¢;,p.)
and ¢;-is a set of places that have O(#,p.). + p, is a set of transitions that
have OC(t.,p, and p,-is a set of transitions that have I(¢.,pp).
el :Pppy — EL is a function from places to effective locations. PPN; can be
generated by Procedure 2.

Procedure 2. to generate PPN;

step 1. Let A={v,...,v,}v;€V;; is a set of nodes such as
R(labelv))eMF_W_O_P. -A;={v@ns.--»Vm is a set of
precedence nodes for node v,=A that is directely connected by
some arcs withwv, and A, ={vgmrns---» V(ram) 15 a set of
succeeding node for ¢,=A that is directely connected by some
arcs withv,. Let /abell - A,) ia set of label for each node in
c Ay | A=A, | and label(- A,) = label(A, -). Remove all

acrs that are connected with nodewv, and create nodes
Uk oe. VR

label(v (4,) = label(v}) = label(v (4 ,+m) - Create arcs from wv(,, to
vy and from v, t0 v, .- Let's call this new graph as

LG/ =(Vig ,Erg/)-

step 2. Define p,ePppy for each node v,V . el(p;) = label(v,),
op(p;) = opv))

82 CHANG, KIM AND KANG

step 3. Let VSLGj is a set of starting nodes and VI;,G,- is a set of ending
nodes of LG; Create transition fy,,., for each starting node

v, € VSLG) and tranmsition {fy, for each ending node v, VIZG,

Connect arcs such as fouree, * = Vys * tsime, = Vy-

Create t, for each tuple (v;,ev), v;,v,€ Vi, eSEr; such
that - f,=p, t,- =p;. Let up, be a unit path information and
plpen(ty) be an index information of part route retained by ¢,.
up,, = label(ey) and plpplty) = plic(es) -

Figure 7 represents PPNs obtained by applying procedure 2 to LG of -
firgure 6. Squares surrounded by circles represent the places included in
Pgi, ., domain, double circles are places included in Pg,, ,, domain and

single circles means the palces included in Pg; domain.

PPN,

taourcs,

Figure 7. PPN for FMS example

HIERARCHICAL CONTROL OF FMS 83
4.4 Uncontrolled Production Petri Net : UPPN

UPPN is a Petri Net which is generated from each PPN, based on the shared

resources. PPN is defined formally as follows.

UPPN= (P veens T ueen 1 UPFN, OUPPN)
Pyppy= PPPNUPR(EL)UPMHUPR(MH)

Pyy=P MH__ACKUP MH_NO_ACK

UPPN guarantees the mutual exclustion of shrared resources using the
information of the binary status of resources. P gy is a set of places to

represent ST and MFE. Pgyy is a set of places to represent MH domain
resources. Py is a set of places to represent part moving. Py acx is a set

of places from which we can get a information about the availability of the
resource for EL; when a part has been occupied that resource. For a place in

Pyr no_ack, we cannot get that kind of information. UPPN can be generated
by prodecure 3.

Procedure 3. to generate UPPN

step 1. (to create resource places P gy for each ST, MF domain resource)
For each PPN;, jelp, repeats followings. Create prePpg, PrE Pppy,,
for each (t;,pp tis1), ti, tis1€ Top,, PrE Pppy,- Make a token marking for each
pre Prsry and connect arcs.
i) If pp=Prrg,, (tioy,br-y, t) and p,_ 1 EPg, . ,, then go to step 2.
i) If pgyy is included in Pg, ,, for each p,ePp, (tis1, Drr1, tive),
create arc such that - pF=1{¢;,,}, p¥- ={¢}, then go to step 2.
iil) If p,=Pp, then create an arc such that - pf=1{t;,}, pr - ={t},
then go to step 2.
iv) If pg4y is included in Pg, ., for each (¢ ppry,tiv2), find p,

that is most precedent place in the succeeding places satisfying
R(el(py) = R(el(p,)) and create arc such that - pX={¢,,,}, R(p.) -
= {tor each (¢, p, t141)-

Figure 8. (a) describes some part of the results of applying step 1 to

84 CHANG, KIM AND KANG

PPN, and PPN,in 'ﬁgure, 7. The places filled with gray color represent

resource places.

step 2. (to create a set of MH domain resource places and connect arcs)
For each jelp, repeats followings. Create a domain resource place

0P grum if a MH resource place of up, was not defined for #; where
tiE TPPM excluding tsource,- and tsinkj' * pt,R= {ti}, pt,»R T = { tz} If RMH(upt,-)
eMFH, Ryg(up,)=R(py) and PfePgy, was created in step 1 skip the

process of this transition and go to next transition. Figure 8. (b) shows the
step 2.

step 3. (to create a set of places to represent part moving and connect arcs)

For each jelpg, repeats followings. For each f;€ Tppy, excluding f,,.,

and g, , Split ¢ into tle Typpy and tle Typpy and create p/ <P, that
represents the state that part is moving. ¢! means the start of part moving
and ¢/ means the completion of part moving. Let upt, be a unit path
information retained ¢ Tpppy and wupp, be a unit path information retained
pEPyy. Then, wupt,=up,, upp, = up,. Dluee 1) = plppn(t). I upp s 18
included in U_PATH_ACK domain, p; is contained in Py ack, else

(a) (b)

HIERARCHICAL CONTROL OF FMS

5 e T
M ' o
A1
t i t i1
(1
5 [3 7 L]
9 10
W Kl e O s o s
t i1 t i2 t M1 t iH2
@
5] 7 4
% {0 #04 -
P’ Puid
‘i‘ !iz ’ib“ tiﬂz
@

(c)

@ Nm o s e

S

1
e 87 31
o

(d)

Figure 8. An example to create an UPPN

85

86 CHANG, KIM AND KANG

contained in Pyy no ack- I p/SPyy no ack» connect arc as i), if
b/ €Pyy ack , connect arc as ii).

) < tl=-t; t]- =), - t]=(6), £} =ty

For example, (#;,p t;+;) in figure 8(c)(2) is transformed to
(], 07t Dot Divd st

ii) Mark ¢} as UP_ACK_MARK . As like figure 8(c)(3), p; is splited

into p,’€Pyy and p;'€Pyy, arcs are connected as follows.

coi ={t'}, i - ={t}, - v, ={t'}, p;, - ={t#}
4.5 Controllable Production Petri Nets : C#I/PPN

CtriPPN is obtained by adding some functional places to UPPN. CtIPPN is
defined formally as follows.

CtriPPN= (Pciipen, T ciripen, L coripen, O coripen)

Peipen=Puppn\ UPo_op\UPcrri \UPack

Pergr is a set of control places, Pjcx is a set of response places that
alert the state transition of eXePPN. P, op is a set of places representing the

state in which operation for a part in a MF domain resource is ready or
operation is finished. A token in the contol place means that the corresponding
transition is selected by Deadlock avoidance module as secure transition.
Response place guarantees the run time integrity between the status of logical
model and the status of real system. C#/PPN can be generated by following
procedure 4.

Procedure 4. to generate CtriPPN

step 1. (to create a set of places Py op)
Create p4, pi€Po_op and t{ “t;s & Teyppy SUCh that py_1, pre € Pyy
and p,ePpg,. for each (p,_y, ¢;, br, t;+1, Dr+1) and connect arcs as follows.
ct={pp-1}, i+ =t; —{Pk}U{Pkl}, cte=pUC i—{pe-1]), tr - =114,
Vo= ta={0d) ti= -t — I8}t =t

In case of ti= tsource’ : tiz {} If ti+1= tsink} ti+1) ={}

HIERARCHICAL CONTROL OF FMS 87

5\‘ 6 7
() —)
t, t

i i+1

M

OO O——T—©
t. t! t. . t.

i i i+1 i+1

@
(a)

§S8T C8Typ ack UMT 5ok CSTyp no_ack UsT UFT

(b)

Figure 9. An example of CtrIPPN

Figure 9(a) describes the step 1.

step 2. (to create a set of Porpy and a set of Pacx)

i) Create p €Pcrg. for each ;& Tiyppy and to,,., such that I(t,p7),
pEE Pregry are defined, and connect I(t;,pf). pf is marked when the ¢ is
decided as a safe firable transition from a deadlock avoidance module.

ii) Create pleP,cx for all transtion ¢, T¢,ppy, and connect I(#;, pf).
piePyck is marked when eXePPN reports start or finish of certain operation.

Figure 9(b) is an example of Ct#[PPN that is generated from a part of figure
8(d) based on Procedure 4.

]8 CHANG, KIM AND KANG
4.6 Transition Classes

Transitions of Ct7/PPN can be devided into seven classes. Dividing factors are
existence of a control place, type of succeeding place, U_PATH_ ACK
marking and f,,,c., tawe- Figure 9(b) shows each one.

CSTyp_no_acx(Controllable Start Transition)

(Definition) A set of transitions teT¢,ppy that satisfies following

conditions.
1) no U_PATH_ACK making.
2) -t contains places such as p°eP.p. and pkEPELUPO_OP

This type of transition represents the start of an 7 OP domain
operation. Cf{/PPN sends a tuple (¢_class, pf, p%, up, pl;next_o_op) to
eXePPN. t_class is the transition class, pf is a response transition
corresponding to 1, p% is a response transition of succeeding transition
teUFT, wup, is an unit path, p/, is an index of part route and next_o_ op
is the first op(p,) of p,=Ppg, that is found along the succeeding places of ¢.

UMT 4cx (Uncontrollable Moving Transition with ACK)

(Definition) A set of transitions te Tq,ppy that has U_PATH_ACK
mark.

Transition ¢ is firable when the system reports that the corresponding
resource is available.

CSTyp_acx(Controllable Start Transition with U_PATH_ACK)

(Definition) A set of transitions te T¢,ppy that satisfies following conditions.
1) with U_PATH_ACK marking.
2) -t contains places such as p°€Pcrp; and pe P\ UPy op

Ctr[PPN sends an information of tuple (¢_class, p7, p%, ub., bl
next_o_op) to eXePPN to request the start of 7 _OP domain operation.

HIERARCHICAL CONTROL OF FMS 80

p% is a response places of {'=UFT that is succeeding transition of
t € UMT ack -

UST (Uncontrollable Start Transition)

(Definition) A set of transitions ¢ T¢,ppy that satisfies following
conditions.

1) no U_PATH__ACK marking.

2) -+t does not contains places p°ePerg;-

3) t- contains p,ePp, -

These transitions represent the start of O__ OP domain operations. These
transistions are executed automatically whenever firable. Ct7/PPN sends an
information of tuple (t_fype, p7, p%, op(pr)) to eXePPN to request the start

of O_ OP domain operation.

UMT 4cx(Uncontrollable Moving Transition with ACK)

(Definition) A set of transitions fe T¢,ppy that have U_PATH__ACK

mark.

Transition ¢ is firable when the system reports that corresponding resource
is available. The response places of the transition ¢ is preceding transition

t€CSTyp ack - CtrIPPN sends this informatin to eXePPN.
UF T (Uncontrollable Finish Transition)

(Definition) A set of transitions te T,ppy that satisfies following

conditions.
1) no U_PATH_ ACK marking.
2) preceding transition fis not contained in UMT scx
3) - t does not contains places p°e Perg;-
4) t- contains p,ePg \JPyy .

SST(Source Start Transition)

90 CHANG, KIM AND KANG
(Definition) A set Of 4, transitions

These transitions have control place, while not included in UST . If they
are selected as execution transitions, they act like UST transitions.

5. Execution of Transition

eXePPN is a Petri Net representing a protocol to communicate with
CtrIPPN and COM. It performs control function for each corresponding
transition class of C#IPPN . There are two types of eXePPNs.

5.1 eXePPNyp no_ack

eXePPNyp no_ack 1 operated when the calling tramsition class of C#rIPPN is
SST, CSTyp no_ack o UST . eXePPNyp nyo_ack Tequests to COM to
start a operation and wait response of accepting the start request. Recieving
response, eXePPNyp no_ack commands COM to start a operation and sends
a response to Ct7[PPN. Finishing the operation, COM sends a corresponding
message, and eXePPNyp no_ack 8larms this result to p% of Ct#IPPN. The
informations of start operation command for 7 OP domain operation are
(wp;, ply next_o_op). For O_ OP domain operations eXePPNyp no_ack Sends
op(py). Figure 10 (a) describes eXePPNyp no_ack -

5.2 eXePPNUP_ACK

eXePPNyp no_ack is operated when the calling transition class of Ct7IPPN is
CSTup_ack- eXePPNyp no_ack requests to COM to start a operation and
wait response of accepting the start request. Recieving response, eXePPNyp acx
commands COM to start a operation and sends a response to Ci/PPN.
Finishing the operation, COM sends a corresponding message, and
eXePPNyp acx alarm this result to »% of CH#IPPN. COM sends another

message that resource is available then eXePPNyp no_acx alarm this result to

p% of CtrIPPN. Figure 10 (b) describes eXePPNyp ack -

HIERARCHICAL CONTROL OF FMS 91

Operation_request
from CtriPPN

Wait Operation_request

) Request Operation to COM
Oparation_request
from CtrIPPN Wait

Wait Operation_request

Request Operation o COM O/—

Wait Response from COM

Recsive_ack
Confirm of request_op

Request_start to COM
Wait

Receive_ack

Receive_ack
Confirm of request_op

K\{M/Q

M
Response from CO Contirm of start_op

Raesponse from COM
Request_start to COM Send_ack to CPPN
Wait l
Wait
Receive_ack
Response from COM) Receive_ack
Confirm of start_op Response from COM

Confirm of U_PATH_ACK
Send_ack to CPPN Send_ack to CPPN

Wait Wait

Svo

Receive_ack Receive_ack

Response from COM Response from COM

Confirm of end_op Confirm of end_op

Send_ack to CPPN

v

o

Send_ack to CPPN

(a) eXePPNUP_NO_ACK (b) eXePPNUp_ACK
Figure 10. eXePPN

6. Conclusion

A systematic approach to generate FMS controller is developed. Required
informations are identified and procedures are developed to synthesize of
controllable Petri Net which is a logical model of the operation of FMS.
Successive applications of four procedures transfrom informations on paths
among resources and part routes to Controllable Petri Net.

The proposed controller has a hierarchically layered structure represented in
figure 11. There is a consistency between layers. Controllable Production Petri
Net and deadlock avoidance module guarantee deadlock-free and safe
transitions in logical level. Execution Production Petri Net and Composite
Operation Monitor maintain integrity between controllable Petri Net and
physical FMS by managing the execution of physical operations associated with
the logical transition.

Proposed controller was built and tested in MMS environment on UNIX
host with TCP/IP as communication protocols.

92 CHANG, KIM AND KANG
Scheduler
module
CtrIPPN
eXePPN
cCoM
MMSGate
Figure 11. Hierarchical Control Structure
REFERENCES
[1] Giva, A. and F. DiCesare, “Petri Net Structural Analysis for Supervisory

2]

3]

Control,” IEEE Trans. on Robotics and Automation, Vol.10, No.2(1994),
185-195.

Hsieh, F.S. and S.C. Chang, “Dispatching-Driven Deadlock Avoidance
Controller Synthesis for Flexible Manufacturing Systems,” IEEE Trans. on
Robotics and Automation, Vol.10, No.2(1994), 196-209.

ISO/IEC 9506-1 Industrial automation systems - Manufacturing Message
Specification - Part 1: Service Definition, 1SO, 1990.

[4] Jeng, M.D., “Generation and Analysis of Synthesis Rules for Petri Nets with

(5]

Applications to Manufacturing,” Proc. of IEEE Conf. on Systems, Man, and
Cybernetics (1994), San Antonio, Texas, 664-669.

Mettala, E.G., R.A.Wysk & S.Joshi, “CIMGEN-A CASE Tool for CIM
Development,” Proc. 3rd ORSA/TIMS Conference on FMS, 1989.

[6] Naylor, A.W. and R.A. Volz, “Design of Integrated Manufacturing System

7l

Control Software,” IEEE Trans. on Systems, Man, and Cybernetics, Vol.17,
No.6(1987), 881-897.

Viswanadham, N., Y. Narahari, and T.L. Johnson, “Deadlock Prevention
and Deadlock Avoidance in Flexible Manufacturing Systems Using Petri Net

Models,” IEFE Trans. on Robotics and Automation, Vol.6, No.6(1990),
713-723.

[8] Zhou, M.C. and F. Dicesare, Petri Net Synthesis for Discrete Event Control

of Manufacturing Systems, Kluwer Academic Publishers, Boston, 1993.

