Journal of the Korea Institute of Information and Communication Engineering (한국정보통신학회논문지)
- Volume 1 Issue 2
- /
- Pages.183-191
- /
- 1997
- /
- 2234-4772(pISSN)
- /
- 2288-4165(eISSN)
A Study on the Hopfield Network for automatic weapon assignment
자동무장할당을 위한 홉필드망 설계연구
Abstract
A neural network-based algorithm for the static weapon-target assignment (WTA) problem is Presented in this paper. An optimal WTA is one which allocates targets to weapon systems such that the total expected leakage value of targets surviving the defense is minimized. The proposed algorithm is based on a Hopfield and Tank's neural network model, and uses K x M processing elements called binary neuron, where M is the number of weapon platforms and K is the number of targets. From the software simulation results of example battle scenarios, it is shown that the proposed method has better performance in convergence speed than other method when the optimal initial values are used.
동시 다발적으로 공격해 오는 위협 표적을 방어하기는 매우 어려우며, 특히 방어용 무장수보다 표적의 수가 많을 경우에는 전체 표적 격추 기대 확률이 최대가 될 수 있도록 유지하는 방법으로서 본 논문에서는 홉필드 신경망 기법을 무장 할당 알고리즘으로 이용하는 방안을 제안하였다. 본 연구는 자동무장할당 알고리즘을 설계함에 있어서 할당변수를 생성하는데 필요한 신경망 학습 횟수를 단축하도록 설계하였으며 컴퓨터 시뮬레이션 결과 watcholder의 방법보다 수렴성이 뛰어남을 확인하였다.
Keywords