VLSI Design and Implementation of Multimedia
Transport Protocol for Reliable Networks

Z O¥
A ZF 5

Jong-Wook Jang"
2 %

Yo RO EWAXE ZIEFL Gbpsol] A2lg, thdt 7l E S8 wE §5A s HLo] 7}
Sao} ghrh o] 2 $ieiM ML EdaAxE 2RI s ki VLSIE 0|43 Z2EZe 3]
TFHSe] A= vk ZREFY H$E Foleld T2t Adsol siA vkt 715E AFEta §
A e Aol rheslEv 2R EFe] Eabsixic)

g ez EAGS oje]t Fo] Yobd sloln EWARE ZIEZe yAg oL ulE $
JatA 2 Aolch B =FoA oleidt AL ol&stod HAE Ay MTP Z2EFS VHDLE o4
gto] stegoj”o 2 MAST Actel FPGA Chip2 ol&3ted Falagict.

MTP Z2EE2 ArAys) Aojgoz FAR Audde ost HAsz e 3 T2 T Al
Ay FAGe] AR ARE Adete 1Y AL BT, AoiYAS Z2EE AR ue} HYu
e FAL Aot sedojdor FEY MTPY A& Ar gl 28] 2953 700 Mbpso] 4}
o] A}

Abstract

This dissertation deals with the design and VLSI implementation of the MTP(Multimedia Transport Protocol)
protocol for the high speed networks.

High throughput, functional diversity and flexible adaptation are key requirements for the future transport
protocol. However it is very difficult to satisfy all these requirements simultaneously.

Fortunately, the future networks will be very reliable. It means that the future transport protocol will usually
perform some fixed functions without the protocol state information. According to this concept, we proposed
and designed the MTP protocol that is consisted of Information Plane and Control Plane. Information Plane
performs some fixed functions that are independent of the protocol state information as far as no error. However
Control Plane manages the protocol state information and controls the operation of Information Plane.

* ZYER FFETE}(jwjang@hyomin.dongeui.ac.kr)
Hah2k - 19973 99 19

21

s e A Al Als

Our MTP protocol was finally implemented as an FPGA chip using the VHDL. We built a testbed for
verification of the implemented protocol, and it was shown that the MTP protocol worked correcily and

made a throughput of about 800 Mbps.

Our future works include the addition of multiplexing and multicasting capabilities to our protocol for

multimedia applications.

1. Introductions

During last two decades, transmission speed in
the communication networks has increased more than
five orders of magnitude, however the processing
speed of protocol processor has improved only 2~
3 orders of magnitude. This change has shifted the
bottleneck of throughput from the network to the
protocol processor. In other words, we can get only
Mbps throughput, even though we use Gbps
networks[1,2].

To discuss protocol processing problem, let us
classify protocol into three categories; low layer
protocol (layer 1, 2 and 3 of OSI Reference
Model-OSIRM), transport protocol (layer 3 through
6 of OSIRM), and application protocol(layer 7 of
OSIRM). We usually implement low layer protocol
by hardware, whose speed can be increased to
Gbps orders. As transport protocol however is very
complex and usually implemented by software,
it becomes bottleneck to improve throughput{1, 2,
3,4,5].

On the other hand, multimedia application requires
more powerful transport protocol. For example,
transport protocol for multimedia application requires
combinations of requirements such as extremely high
throughput (supercomputer transmission), error-free
transfer (data transmission), low delay jitter(voice
conversation), fast connection (remote procedure
call), and multicast (collaborative work). To support
these requirements, we need a new transport
protocol that can satisfy high throughput, functional
diversity, and flexible adaptation[3]. In other words,
multimedia transport protocol has to be able to

22

support throughput more than Gbps order. It also
has to provide all kinds of functions that are
required in multimedia applications. Furthermore, it
should be as flexible as to apply all kinds of
applications effectively.

However, existing transport protocol can not
support the requirements[3]. It is very hard to get
Gbps throughput by the existing protocol such as
TCP/IP. The existing protocol can mnot support
some functions such as fast connection, multicast,
and broadcast. Moreover, they are not so flexible
as to apply to multimedia application effectively.
For example, it is impossible to skip error control
function in the existing protocols, even though it is
not required in the voice conversation[2,5,6].

Multimedia transport protocol should be very
complex so that it can support functional diversity
and flexible adaptation. On the other side, it should
be simple to get high throughput. Therefore, it is
very difficult to satisfy all these requirements at
once. Fortunately, probability of being unexpected
event caused by error and buffer overflow, will be
decreased considerably in future networks, because
they will supply much more reliable service, with
bit error rate as low as 10-9 compared to the
networks today[2]. In addition, it is also easy to
provide a large buffer because the price of
semiconductor memory is decreased more and
more. Therefore, transport protocol will result in
performing some fixed functions without protocol
state information.

From the idea, we propose a new multimedia
transport protocol (hereafter, we call it MTP) in
this paper. MTP is consist of two planes;
information plane and control plane. Information

% / VLSI Design and Implementation of Multimedia Transport Protocol for Reliable Networks

plane performs the functions that are independent
of protocol state information. However control
plane manages protocol state information and controls
the operation of information plane. Therefore, we can
transmit user information without protocol state

information, as far as there is no unexpected event.

Table 2.1 Functions of MTP

shown in Table 2.1, where MTP is equivalent to
the layer 4 through 6 of OSIRM][2,4,7].

Table 2.2 shows the characteristics of transport
functions. We can classify the transport functions
into three categories. The first one is information
function that handles information itself. The second

Function Name

Covering Layer in the Existion
Protocols

Algorithms

Segmentation and Reassembly,
Sequence Control

Transport, Low Layers

Stop and Wait,

Error Check

Retransmission Control

Flow Control Sliding Windows
Transport, Low Layers Rate Control
Acknowledgement ACK, NAK
Error Control FEC, ARQ

Transport, Low Layers

Parity, CRC, LRC
Goback-n Selective Repeat

Connection Management Session Transport, Fast Connection
Management Channel Management Session, Implicit Connection Broadcasting,
Call Processing Low Layers Multicasting

Multiplexing Transport, Low Layers
Ecryption Presentation Layer DES

Failure Recovery

All Layers

Dialogue Control

Session Layer

Data Encoding

Presentation Layer

Data Compression

Presentation Layer

MPEG, JPEG, X.261, MHEG

Media Synchronization

We describe the transport function and its
characteristics in chapter 2. We also give the MTP
architecture and its characteristics in chapter 3. And
we describe the implementation of MTP protocol in
chapter 4 and evaluate the throughput in chapter 5.
Finally we present conclusions in chapter 6.

2. Transport Functions and Its
Characteristics

The functions of MTP can be summarized as

one is modification function that may change the
content of information. The last one is state
function that manages protocol state information.
Information function includes SAR, sequence
control, error check, muitiplexing and media
synchronization function. Modification function
includes encryption, data encoding, and data
compression function. On the other hand, state
function has flow control, acknowledgment,
retransmission control, connection management,

failure recovery, and dialog control function. To

23

PP uFNN A AL A1

Table 2.2 Characteristics of Functions of MTP

Functions Type | Time Relationsship Igf;fg:_:gz: Allocation
SAR I Real-time Information Plane
Sequence Control I Real-time With SAR Information Plane
Flow Congrol S Real-time Control Plane
Acknowledgement S Real-time Control Plane
Error Check I Real-time Information Plane
Retransmission Control S Real-time With Flow Control Control Plane
Conn.Management S Non-realtime Control Plane
Multiplexing I Real-time Lower Part Information Plane
Encryption M Real-time Upper Part Information Plane
Failure Recovery S Non-realtime Control Plane
Dialog Control S Non-realtime Control Plane
Data Encoding M Real-time Upper Part Information Plane
Data Compression M Real-time Upper Part Information Plane
Media Synchronization 1 Real-time Upper Part Information Plane
x%) 1 : Information Function M : Modification Function S : Status Function

minimize information exchange between planes, it
is better to assign information function and
modification function into the information plane,
while state function into control plane.

We can also classify transport function as
real-time function and non-real-time function, taking
into account of time relationship. Connection
management function is generally insensitive to
processing time. However, information function and
modification function should be processed with
real-time. These real-time functions are most
important one to affect the transport throughput.

Finally let us discuss the implementation
characteristics of transport functions. As sequence
control is tightly dependent on SAR, it should be
implemented with SAR function. We usually
implement error control and flow control function
together{2].
positioned at low part of transport layer. We can

Multiplexing function should be

omit the function from transport layer, because
bandwidth efficiency is not more important factor

24

in future network, compared to protocol complexity.
We should perform encryption, data encoding, data
compression, and media synchronization at upper
part of transport layer, because these functions may
modify the content of information.

3. Multimedia Transport Protocol
architecture

3.1 Information Planse
We use two-plane architecture in MTP, taking
into account of event dependency. This means that
control plane manages protocol state information
but information plane should be independent of the
protocol state information, as possible as it can.
Therefore function of information plane should be
selected according to the following guideline.
(1) Functions that are independent of the protocol
state variables are allocated to information plane.
(2) To minimize the information exchange between
planes, we put information function and

#C/ VLSI Design and Implementation of Multimedia Transport Protocol for Reliable Networks

modification function at information plane.

Table 2.2 also shows the allocation of transport
functions. We assign SAR, sequence control, and
error check function to the information plane,
because we can process them without protocol state
information. In addition, modification function such
as encryption, data encoding, and data compression
function is also allocated to the information plane.
On the other hand, information plane also includes
multiplexing and media synchronization function to
minimize the information exchange between planes.

Among the above functions, modification function
should be processed before protocol overhead is
involved. Therefore, modification function should be
processed at top of transport layer. Media
synchronization function also should be at upper
part of transport layer. We can implement these

functions depending on the application.

[Header(1) I Seq(2) —[information Seqrnent(43)

| rosern]

(e) Userlinformation PDU

thldo(i) |s-q(2)J Middie(2) Icm Sea(2) Iwm Lars“(z)]Marg irmamz) I

(b) Control Inforsation PDU

Fig. 3.1 Formats of MTP Frame

Fig 3.1 shows the format of information PDU
that is processed by information plane. Information
PDU has no control information so that it can be
processed without protocol state information. Flag
indicates delimit of PDU. We insert source and
destination address into address field. These
addresses are given by control plane after
connection is established. Sequence number is
generated by information plane itself. We use
sequence number as buffer address. In other words,
PDU whose sequence number is “a” will be stored
at address “a”. Flag, address, and sequence number
are inserted just before transmitting. We then store
only information field and FCS filed in buffer.
Therefore, we can process the information PDU in

advance, because all fields are independent of
control information.

Fig 3.2(a) shows the structure of information
plane of sender. We receive information from
application and perform modification function and
media synchronization function, if necessary.
Recently many media synchronization methods are
proposed[8]. We use media synchronization method
that binds all media together. In other words, traffic
that is given by application at same time is assigned
into same PDU. Other media synchronization
methods can of course be applied to MTP.

PDU processed by media synchronization module
will be passed to SAR module. SAR module divides
application message into information PDU and
assigns sequence number to each PDU. After these
procedures, we calculate FCS and store it in buffer
indicated by sequence number. These procedures
are able to be processed in advance, without any
information from control plane. The word size of
buffer is sum of information field and FCS field:
While, buffer size if determined by window size of
flow control algorithm. With this structure, we can
read one information PDU at once.

PDU stored in buffer will be transmitted under
control of control plane. In other words, control
plane gives read sequence number and read signal
to the information plane to control information
flow. Read sequence number is address of buffer to
read and indicates the sequence number of PDU to
transmit. Read signal indicates the timing to
transmit. Accordingly we can control information
flow by read signal.

Fig 3.2(b) shows the structure of information
plane of receiver. If PDU extraction/address check
module detects PDU destined to itself, it gives
ready signal and received sequence number to
control plane. In addition, error check module
reports to control plane whether it detects error or
not. Control plane then checks received sequence

number and error signal to know whether received

25

FRAFRRFAT A A1 AE

FoOAHAZ200
i
-
E

Buffer
Wirke
p Whrke Sequence Mumber
L Rond
:‘ st Hesder | Soq | informabon | FCS|
E
Plane
Transport
Low Layer
(a) Sender
mmﬂ___—_—
- 1
[Modification Fonction '}
c [Media Synchrouization j
[0}
N et v)
R
(o]
L Buffer
-
p [Feed Seqoeive Nugbey
L Wete Scquente Musber
A ¥
N B — Emor Chedk 1
E y
2 SE PDU Extraction / Address Check |
Information Plane

Transport
— -

H

Low Layer
(b)Receiver

Fig. 3.2 Structure of Information Plane

PDU is correct or not. If it finds no errors, it
stores the PDU in buffer indicated by write
sequence number. If it finds some errors, it informs
sender of this fact. As we employ sequence
number to buffer address, we can cover sequence
control of receiver automatically.

PDU stored in buffer is passed to SAR module
under control of read signal given by control plane.
SAR module then reassembles PDU into a message
and passes it to application after processing media

26

synchronization and modification function, if

necessary.

3.2 Control plane

Control plane manages protocol state information
and controls the operation of information plane.
When application requires to transfer information,
control plane establishes information connection and
control connection simultaneously. We use
information connection to transmit user information,
but we use control connection to exchange state
information between transport entity. We can use
signaling
connection.

channel of low layer as control

We also divide control plane into two modules,
taking into account of event dependency. One is
drive module that controls the operation of
information plane directly. The other one is event
module that manages protocol state information and
controls the operation of drive module. The
operation of drive module is also independent of
protocol state information.

Fig 3.3 shows the structure of control plane
of sender. Drive module of control plane
generates write sequence number and write
signal to receive information from application.
We use WC(Write sequence Counter), FP(Free
Point), and write control module to generate
these signals. We store write sequence number
in WC, that indicates address of buffer to write
PDU. FP indicates the last address that is
Write
module is control logic to generate write signal.
Therefore, buffer address indicated by WC
through that indicated by FP is empty space as

released by acknowledgment. control

shown in Fig 3.3.

When write control module receives ready
signal from information plane, it generates write
signal to store PDU in buffer indicated by WC
and increments WC by one. I[f WC is then equal

/ VLSI Design and Implementation of Multimedia Transport Protoco! for Reliable Networks

lﬁ“‘;'_.l-————,m -
Control
A Poopty Spece
Stute
Table
T Control Ptane Infopmstion Plaxe
—Mds«u«
Cootrol Comcction Information Coanxection

Fig. 3.3 Control Plane of Sender

to FP, it disables ready signal to stop information
flow from application, because there is no empty
space in buffer. If we can get empty space again,
write control module enables ready signal to
receive information from application.

On the other hand, drive module also generates
read sequence number and read signal shown in
Fig 3.3. We use RC(Read sequence Counter) to
store read sequence number that indicates the
sequence number of PDU to transmit. RC is set to
O initially and updated whenever an information
PDU is transmitted. Source of RC should be
determined depending on the retransmission control
algorithm. In other words, the next sequence
number should be selected from three sources;
increment, stack, and sequence number given by
acknowledgment. If there is no error, we must
select next sequence number from increment
source. Otherwise we must select another source
depending on retransmission control algorithm. For
example, we must select the sequence number
given by acknowledgment, in case of goback-n
algorithm. Flow control function is controlled by
read signal that is generated by rate control
module. This signal is generated according to rate
control algorithm based on interval timef9]. Fig 3.4
shows the rate control module. It consists of a shift
register and two counters. Shift register saves

interval time of the adjacent two PDU being

Shift Register
Interval
r et | [fw
Indert Timeout
Shift Right
D
=
* E
t
PDLIALZE
Rate Control Module

Fig. 3.4 Rate Control Module

transmitted. Counter T counts interval time and
up-down counter W indicates the number of PDU
to be able to transmit without acknowledgment at
any instance of time.

Shift register is shifted right whenever a PDU is
transmitted. The first element of shift register is
decremented by one at each PDU-time(duration of
one PDU) and it generates time-out signal when it
equals to 0. Counter T is incremented by one at
each PDU-time. It is inserted to the left end of
shift register and then reset to 0 whenever a PDU
is transmitted. On the other hand, counter W is
initially set to K, that indicates maximum number of
PDU to be able to transmit without acknowledgment.
It is decremented whenever a PDU is transmitted and
incremented whenever time-out occurs at shift
register. We can then activate read signal at each
PDU-time, as far as counter W is none-zero and
wait signal is enable. We use wait signal here to
stop transmitting, when receiver can not receive
PDU any more.

Fig 3.5 shows control plane of receiver. It is also
consist of drive module and event module. rive
module generates write sequence number and write
signal to receive PDU from low layer. It also
generates read sequence number and read signal to
transfer message to application. Write sequence
number is saved in WC and read sequence number
in RC.

If information plane receives PDU destined to

27

s PP R g =EA Al AlE

1
Drive Module Bufler
g N W e
J o Resered
A | correctly
s [AE - = I
Modely Reccived

but efror in
l wC }—“ some PDU

Information Connection

Fig. 3.5 Control Plane of Receiver

itself, it sends ready signal and received sequence
number to drive module. In addition, it reports
results of error detection. If it detects no error,
drive module generates write signal to store
received PDU into buffer and increments WC by
one. If it detects error, drive module updates state
table and informs the result to sender through
control connection. On the other hand, as far as
RC is less than EP(Error Pointer) and strobe signal
is enable, we activate read signal at each PDU-time
to transfer information to application and then
increment RC by one. EP indicates the lowest
sequence number of PDU that is received incorrectly.

As mentioned before, event module manages
protocol state information and controls the operation
of drive module. Fig 3.6 shows event module and its
control signals. When connection is established,
event module gives the initial value of drive module
such as PDU-time, address, and K. PDU-time and
address are determined from the call.request
command given by application, while parameter K
depends on characteristics of network and flow
control algorithm. We can determine these signals
before we start to transmit user information.
Furthermore we use ready signal and strobe signal
to make handshake between transport layer and
application. We also use wait signal to stop

transmitting in case of event such as buffer

28

overflow. These signals will not interrupt the
normal operation of drive module, as far as there
is no unexpected event.

When drive module detects error, it notifies
sequence number of PDU that has error, using
ACK/NAK signal. Event module then makes
acknowledgment to inform sender of the fact. In
addition, when event module receives acknowledg-
ment from its counterpart, it also generates
ACK/NAK signal to update EP, FP, and RC
register. If there are no unexpected events, event
module updates only EP and FP register. We can
update these registers without interrupting the
normal operation of drive module, because they are
not address pointer such as RC register. Therefore,
we can operate drive module independently, as far
as there is no unexpected event.

It is better to implement event module by
software, because its functions vary with depending
on the protocol state information. However, it is
possible to implement information plane and drive
module by hardware, because their functions are
almost fixed. We can implement those functions
into transport board that is compatible to system

bus of general purpose computer. In this case,

1
P T
Memary Py
Slgnels for i o
Routine) - Scudes Pat] }}
A
T
[:
[:
N
»
il == |
A
Signets for :
[Receiver Pat
T
Event Module

i
¥
L

Fig. 3.6 Structure of Event Module and Control
Signals

event module may be implemented by drive program

3/ VLSI Design and Implementation of Multimedia Transport Protocol for Reliable Networks

to operate the transport board.

3.3 Characteristics

Finally let us talk about the characteristics of
MTP. Buffering is inevitable in transport protocol
because it must prepare for retransmission. Therefore
maximum throughput of transport protocol is a
reciprocal of buffer access time theoretically.

On MTP, information plane is responsible for
transmitting user information. We can perform its
function and store the result in buffer beforehand.
This means that the throughput of MTP depends on
only read signal shown if Fig 3.2(a) and buffer
access time. We can generate read signal at each
PDU-time as far as there is no unexpected event.
Therefore, the throughput of MTP is reciprocal of
PDU-time and can be improved to theoretical
maximum. Fore example, when word size of buffer

is 1 K and its access time is 100 nsec, we can get

almost 10 Gbps throughput theoretically.

MTP is flexible so that we can apply it to
multimedia application effectively. We can select
transport function depending on the application by
negotiating at connection establishment phase. For
example, if we need not to control error in voice
communication, we can skip error control function
only by ignoring error signal shown if Fig 3.5(a).
This can be achieved by software stored in event
module. On the other hand, we can also change
protocol control algorithm dynamically during
information transfer phase, because MTP uses

separate control connection.

4. Implementation

We describe about implementation of MTP
protocol. At first we explain about environment and
method of implementation and next we will explain

production and testing of MTP protocol.

w ladds_coahle — TX ACTEL

3 CHIP

. DMR
Layer /F Layer
A
/) addr_chable j:;;
CHIP
bmem—'

Fig 4.1 Structure of MTP Board

29

g of A B 24183 = 1] A1E AlE

4.1 Environment and Method
of Implementation
We designed MTP protocol using Powerviews
VHDL which is CAD Tool and verified the correct
operation using simulation function. And we made
FPGA chip of MTP protocol machine using ALS
which is FPGA Tool.

4.2 Production and testing

We produced MTP Board which processes MTP
protocol using MTP FPGA chip which is
implemented above process and SRAM. And we
had tested as like test environment using DMR
(Dynamic Monitor Ring) as low layer protocol[10].
Fig 4.1 shows internal structure of MTP Board
including FPGA chip and commercial chip.
Remainder part excluding TX_BUF at Sender
Block and Remainder Part excluding RX_BUFF at
Receiver Block is produced by Actel Chip(PGA
Type 8000 Gate). We implemented TX_BUFF and
RX_BUFF with SRAM(KM6264).

We tested MTP protocol Board using FTP
service as upper layer and MAC protocol as low
layer and verified the operation of test system
through simple file transfer. At first user request
for connection to application layer such as FTP
then FTP established connection with counterpart
system. After connection is established successfully,
computer including FTP began to send information.
On the other hand, if computer receives
disconnection request form user and counterpart
system then computer stop the operation and

disconnect.
5. Throughput
5.1 Evaluation
We designed MTP protocol for High Speed

Network. Therefore we monitored the performance
at interface with Application layer.

30

We designed MTP protocol for implementing
H/W easily as described chapter 3. Therefore
Information from application layer is stored buffer
as stream type by Write signal which is generated
Control Plane. Information stored buffer is divided
to cells and FCS is added to each cells and
transfered to low layer. At that time, the processes
which information is transferred to low layer and
upper layer is operated parallel and it spend 70
nsec to process one cell.

Performance of MTP protocol is depend on Read
signal and Buffer access time in Fig 3.5 because
Buffer access time is longest among processing
time of each module. In other words, it depends on
Buffer cycle time generating Read signal.

Because MTP protocol transmit information a
PDU per one time, so the max throughput of MTP

protocol is presented as follows
Max_throughput=PDU_size*1/Cycle_Time 5.1

Now MTP chip generate Read signal and Write
signal in speed of 250 nsec by turns as presented
Appendix. Namely, Buffer cycle time is 500 nsec
(2 * 106 packets/sec). We got this value from
Back-End Layout) simulation(Post which is
previous step to chip production.

Therefore we could evaluated the throughput of
MTP chip as like (5.2).

Max_throughput = Icell/500nsec = 48+*8bit/500nsec
= 768Mbps 5.2

Now let us consider the effects of transmission
errors. and we consider retransmission for
correcting error which is generated randomly.
Therefore we can compute the mean number of
retransmissions per frame. A frame is successful if
both the data and acknowledgment are correctly
received. The probability of success is (1 -Pd)(1 -
Pa). Therefore, the probability of failure is defined
like (5.3). Table 5.1 shows definitions of symbols
which was used for derivation.

#r / VLSI Design and Implementation of Multimedia Transport Protocol for Reliable Networks

Table 5.1 Definition of Symbols

Symbol Definition
| E Bit Error Rate
Pd Probability of a cell being error
Probability of a ACK/NAK cell being
Fa error
L Probability that a data cell or its

ACK/NAK packet is being error
Mean number of transmission per a cell

R
including retransmission
F cell length(384 bits)
L=1-(1-Pd)(1-Pa)=1-(1-E)F (5.3)

The probability that exactly k attempts are
needed(i.e., k - 1 retransmission) is (1 - L)* Lk-1.
This result number of

yields an expected

retransmission per frame of 1/(1 - L) like (5.4).

k-1 1
R=1| k(Q-L)L dL=——
J:() 1-L 54

Using this value of R, we arrive at a Throughput
of MTP chip like (5.5).
Throughput= Max_Throughput/R (5.5)
consider

Therefore when transmission, the

throughput of MTP protocol is presems as Fig 5.1

Throughpu(Mbps)

800
700 b
600 |
500 I
400 F
300
200 L
100
o N N . N - N BER
01 0.0001 0.0000001 1E-10 1E-13

Fig 5.1 Throughput of MTP Protocol

5.2 Evaluation Analysis

Packet
size
10!
Memory
Beand
* <
10°
SRR EUUTIRI: SV SOOI VUSSR N OO
10 Clock
Boun
107 10’ 0t 10 ° 10 0’
XTP MTP Packesce
—_—

= Curent Ravge ~SmseetTE— VLS| Inphementanon Rnge

Fig 5.2 Throughput Comparison of Various Transport
Protocols

It is easier to conceptualize the problem of

high-performance protocol processors and the
relations between the different technologies, using a
speed chart as provided as Fig 5.2 below. The
horizontal axis describe processing speeds as
measured in packets processed per second. The
vertical axis describes the size of a packet. The
throughput measured in bit/second is the product of
the packet size and the rates of packet processing
in pfs. Since both axes use logarithmic scale, the
equal throughput curves are linear. The ultimate
limits on protocol processing speeds are established
by the boundary lines. The vertical line on the
right establish the bounds on the p/s processing
rates set by chi--clock rates(and the number of
cycles required to process a packet). The 1 Gbps
throughput line on the right sets the bounds
established by memory technology on the speeds at
which packet bits may be read and written. While
these physical bounds, on clock and memory access
rates, may be improved slightly via high-speed
logic technologies, they set the ultimate bounds on
protocol processing speeds. The horizontal lines set
the bounds on packet size and headers; both may

31

eI RS =FA A1 ALz

be flexibly adjusted by protocol design to optimize
performance goals. The goal of high-speed protocol
processing may be described as increasing the
processing rates measures in p/s. Current high-
speed protocol implementations{11,12] ranges up to
a few thousands p/s. And throughput of XTP
which can be tried to implement H/W was
evaluated about 105 packets/sec. But MTP protocol
can be used to build RAM whose speeds range a
few orders of magnitude higher, closing the gaps to
the physical limits(or reaching very closely).

6. Conclusion

As speed of network becomes higher, Need for
high speed multimedia transport protocol has been
increased rapidly. However, it is very difficult to
get high throughput by the existing protocols,
because they are complex and usually implemented
by software. Furthermore, they are not so flexible
as we can not apply them to multimedia application
effectively. Therefore, we need a new transport
protocol that can support high throughput, functional
diversity, and flexible adaptation.

In order to increase throughput, the protocol
should be simple as possible as it can. On the
other side, it should be so complex that it can
support functional diversity and flexible adaptation.
So, it is very difficult to satisfy all the requirements
at once. Fortunately, probability of being unexpected
event caused by error becomes very low in future
reliable network. This implies that transport
protocol will result in performing some fixed
function without any protocol state information. In
other words, we can formalize functions of transport
protocol, taking into account of event dependency.
From the idea, we propose a new high speed
multimedia transport protocol(MTP).

MTP is consist of information plane and control
plane. Information plane performs event-independent
and fixed functions. It can operate without protocol

32

state information, as far as there is no unexpected
event. On the other hand, control plane manages
protocol state information. It is consist of drive
module and event module. Drive module also
performs fixed functions without protocol state
information. It controls the operation of information
plane directly. However, event module maintains
the protocol state information and handles the event
caused by state change. It controls the operation of
drive module but it doesn’t interrupt the normal
operation of drive module as far as there is no
unexpected event.

Information plane performs only SAR, sequence
control, and error check function for core function.
We can perform these functions and store the results
in buffer beforehand, because these functions are
independent of protocol state information. On the
other hand, flow control can be achieved by
reading time of buffer. The read signal is generated
by rate control module in drive module. Therefore,
information plan can operate independently as far
as there is no unexpected event.

Maximum throughput of MTP depends on only
buffer access time. Therefore we can get more than
800 Mbps throughput by MTP. In addition, MTP is
flexible and it can be implemented by hardware

easily, because most functions of MTP are fixed.
References

[1] W. Doeringer, D. Dykeman, M. Kaiserswerth,
B. Meister, H. Rudin, and R. williamson, "A
Survey of Light-weight Transport Protocols for
High-Speed Networks,” IEEE Trans. on
Communications, Vol. 38, No. 11, Nov. 1990,
pp 2025 - 2039

[2] T. Porta and M. Schwartz, “Architectures,
Featurse, and Implementation of High-Speed
Transport Protocols,” IEEE Network Magazine,
May, 1991, pp 14 - 22.

[3] D. Schmidt, D. Box, and T. Suda, "ADAPTIVE:

33X / VLSI Design and Implementation of Multimedia Transport Protocol for Reliable Networks

A Flexible and Adaptive Transport System
Architecture to Support Lightweight Protocols
for Multimedia Applications on High-Speed
Networks,” Proceedings of 1st International
Symposium on High-Performance Distributed
Computing, Syracuse, NY, Sept. 1992, pp 174
- 186.

[4] Z. Haas, "A Protocol Structure for High Speed
Communication over Broadband ISDN,” IEEE
Network Magazine, Jan. 1991, pp 64 - 70.

[5] M. Zitterbart, “High Speed Transport
Components,” IEEE Network Magazine, Jan.
1991, pp 54 - 63.

{6] D. Clarkm V. Jacobson, J. Romkey, and H.
Salwen, An Analysis of TCP Processing
Overhead, IEEE Communications Magazine,
June 1989, pp 23 - 29

[7} A. Tanenbaum, Computer Networks; 2nd
Edition, Prentice Hall, 1989.

[8] P. Leydekkers and B. Teunissen, “Synchroni-
zation of Multimedia Data streams in Open
Distributed Environments,” PTT Research
Tele- Informatics, Netherlands. pp 94 - 104.

[91 J.W. Jang and J.T. Lee, "Design and

Implementation of Positive flow Controllers
for High-Speed Reliable Networks,” Proceedings
of ICT97, Vol.3, pp. 1373-1378 , Apr. 1997.

[10} JM. Kim, JK. Choi, Y.H. Jeon, H.J. Jeong,
and J.T. Lee, “The Design and Performance
Simulation of the Dynamic Monitor Ring
Protocol,” Proceedingd of JCCNSS’93, pp. 113
- 118, June. 1993,

[11] V.Jacobson, UNIX 4.3 BSD TCP performance,
private communication, 1988

[12] H. Inai, etal., End-to-End Performance Modeling
for Layered Protocols,
INFORCOMO90, pp.442-449, June. 1993.

Communication

I T S(41EE)
1987. 2 BAE R A4S
Agta} 24
1991. 2 Sdoistw A4ksh
3} A}
\%’%& ‘ 1995. 2 ¥ARstE AR
- N st g
[+ [
1987. 2~1995. 2 FAAEAA Y d7Y
1988. 3~&A) Sy FFe T 2o
1996. 9~dA FFAAFAATFY 2HdTH

33

