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Interactions of a Horizontal Flexible Membrane with Incident Waves

YAksE 54y felnte] JAE

II-Hyoung Cho*, Seok-Won Hong* and Moo Hyun Kim**
=YY YT PR

Abstract[ ] The interaction of monochromatic incident waves with a horizontal flexible membrane is
investigated in the context of two-dimensional linear hydro-elastic theory. First, analytic diffraction and
radiation solutions for a submerged impermeable horizontal membrane are obtained. Second, the theoretical
prediction was compared with a series of experiments conducted in a two-dimensional wave tank at Texas A &
M University. The measured reflection and transmission coefficients reasonably follow the trend of predicted
values. Using the developed computer program, the performance of surface-mounted or submerged horizontal
membrane wave barriers is tested with various system parameters and wave characteristics. It is found that the
properly designed horizontal flexible membrane can be an effective wave barrier.

Keywords : breakwater, flexible membrane, reflection coefficient, transmission coefficient, model test, eigen-

function expansion method, linear potential theory, diffraction, radiation
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1. INTRODUCTION

Most floating wave barriers are known to be
ineffective in long waves unless its size is comparable
to the pertinent wave length. Therefore, to be a very
effective wave barrier, the structural dimension has to
be large and the resulting high construction cost has
been a major obstruction for the realization of many
floating-breakwater projects. During the past decade,

there has been a gradual increase of interest in the use
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of flexible plate or membrane as an effective, inex-
pensive wave barrier. In particular, the membrane is
light and rapidly deployable, and thus it may be an
ideal candidate as a portable temporary breakwater.
There have been many theoretical and experimental
studies with regard to the performance of vertical
flexible wave barriers. For example, the efficiency of a
vertical-elastic-plate breakwater clamped at the seafloor
was investigated by Lee and Chen (1990) and Williams
et al. (1991). Abul Azm (1994) also showed that the
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efficiency of the elastic beam breakwater can be
improved by tuning two vertical screens. On the other
hand, the performance of a vertical-screen membrane
breakwater, which is equivalent to the tensioned elastic-
beam breakwater with zero bending rigidity, was
investigated by Thomson et al. (1992), Aoki et al.
(1994), Cho and Hong (1995), Kim and Kez (1996),
Kee and Kim (1997), and Williams (1996). Using the
linear wave theory and membrane-motion equation,
Kim and Kee (1996) and Kee and Kim (1997) showed
that almost complete reflection was possible by a
vertically flexible membrane despite appreciable sinu-
soidal motions, which tend to generate only exponen-
tially decaying local (evanescent) waves in the lee side.
The theory was compared favorably with 2-D tank
experiments (Kim et al., 1996). This interesting pheno-
menon can alsc be confirmed by the classical wave-
maker theory (Dean and Dalrymple, 1984).

One of the major problems associated with the use
of flexible vertical screen is the expected large wave
loading and possible blockage of currents. In view of
this, the possibility of using alternative horizontal
membrane is investigated in this paper. In particular,
the submerged horizontal membrane dose not hamper
the seascape and also allows the passage of ships and
currents. Since the horizontal membrane does not direc-
tly block incoming waves, the diffracted and radiated
waves including various elastic modes have to be
properly tuned to be an effective wave barrier. The for-
mulation of the interaction of a submerged horizontal
membrane with waves is in general more complicated
than the vertical-membrane case. Siew and Hurley
(1977) and Mclver (1985), for instance, studied the
diffraction of linear waves by a submerged rigid flat
plate. They showed that it can reflect significant
amount of incident wave energy in a certain wave-
frequency. region. In this paper, it is shown that the
overall wave-blocking efficiency can be greatly impro-
ved by using horizontal flexible membrane instead of
rigid plate. The relevant hydro-elastic theory is
formulated in Sec.2.

The present hydroelastic theory was also verified by

a series of experiments conducted in a two-dimensional
wave tank at Texas A & M University, which is summ-
arized in Sec.3 It is seen that the wave-blocking perfor-
mance can be reasonably predicted by the present
linear hydro-elastic theory.

Finally, in Sec.4 the performance of various designs
of horizontal-membrane wave barriers is studied for a
variety of wave conditions or water depths. It is shown
that the system can be highly efficient if properly
designed and the high-performance region can be con-
trolled by changing relevant design parameters. The
results are summarized and concluding remarks are

given in Sec.5

2. MATHEMATICAL FORMULATION
AND ANALYTIC SOLUTIONS

We consider the interaction of a horizontal mem-
brane wave barrier with monochromatic incident waves.
Cartesian axes are chosen with the x-axis along the
mean free surface and y-axis pointing vertically
upwards. The water depth is denoted by k and the
submergence depth of the membrane by d. It is
assumed that both ends of the membrane are fixed at
x=*a, and a uniform tension T is applied on the
membrane in the x direction (see Fig. la). It is also
assumed that the fluid is incompressible and inviscid,
and the wave and membrane motions are small so that
linear potential theory can be used. The fluid particle
velocity can then be described by the gradient of a
velocity potential ®(x, y, ). Assuming harmonic
motion of frequency ®, the velocity potential can be
written as ®(x, y, )=Re[¢(x, y)e™]. Similarly, the

vertical displacement of membrane can be written as

C&x . 1) =Re[(§(x)e o] o

where £(x) is the complex displacement of membrane.
The velocity potential ¢ satisfies the two-dimensional
Laplace equation

Fo . PP _ .. .
™) + 52— =0 in the fluid ?)
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with the following boundary conditions

%—v¢=00ny=0(v=£g)z‘) ©)
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tim (22 + kg =0 )
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The complex displacement of membrane can be expan-

ded in terms of a set of natural modes of the membrane:
Ex)=Y.6 fitx) )]
=1

where ¢ is the unknown complex modal amplitude
corresponding to the /th mode. The modal functions
and eigenvalues of the membrane satisfying the mem-

brane equation and the end condition are given by
AS -
iey=cos o, A= 2D gy 55 )
fix)= ®
Afx
Ap)=sin——, A =Ix(1=1,2,3,)

where the superscripts S and A denote symmetric and
asymmetric modes about x=0, respectively. The modal
functions given in eq‘uation (8) are orthogonal to each

other in the interval [-a, a]:

[ oy, (x)dx={‘; oy ©)

Including all the flexible membrane modes, the com-

plex potential ¢(x, y) can be expressed in the form

6, 9) =0 1)+ 3G, 0 (6,) 10
1=1
¢D(xry)= ¢1 (x,)’)"'(bs(an)

where ¢, is the diffraction potential and ¢, ¢ denote
the scattering and radiation potential, respectively. The
incident wave potential ¢, with unit amplitude is given by

ig coshk,(y +h)
(0] coshk,h

¢ (x,y)=~- an

where g is the gravitational acceleration, and k is the

wave number satisfying the usual dispersion relation

—é"’i =k, tanhkh (12)

2.1 Diffraction Problem
The diffraction potential ¢ satisfies equation (2)-(5)
and the following membrane boundary condition:

99y
dy

In the following, the symmetry of the fluid and mem-

=0on y=—-d,-a<x<a (13)

brane is used by splitting ¢ into symmetric and asymme-
tric parts.

¢D (x’y)=¢l§(x’y)+¢3(x’y) (14)

where

s s 9%
9% (x.y)=9(,y),— ~=00n x=0

¢ (=x,y)=—¢p(,y), ¢4=0 on x =0

The fluid domain is divided into three regions, as shown
in Fig. la. Region (]) is defined by x< —a, —h <y <0,
region (II) by |x|<a, -d <y <0 and region (II) by
[x]|<a, -h <y <-d.

The symmetric diffraction potentials in the three

fluid regions are written as

ku(x +a)

g5 =_ B8 (L ke Foo@)+Y afe fin O
[ 2 n=0
43O =— %%b,fcoshkz,, X far ) (15)

050=-% (¢} 10)+Y clooshks, ¢ 5, 0)}
n=1

where k,y=—ik, kyy=—ik,
The eigenfunctions f,, (v), f2, (), and f5, (¥) are
given by

coshk,(y +h) 0
it A n=
coshk,n
fin )= ‘ )
cosky, (y +h) n>1
cosk,, b’
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coshk,(y +d) 0
—, n=
cosh k,d
fa )= . z J an
cosky O 4d) o
cosk,,d
cosk,, (y +h
Fan )= O21) 2 18)

cosksy, (h—d)

The eigenvalues ky,, k,, k3, are the solutions of

the following equations

k,tanhkh = %, n=0 "'
e 19)
ki, tank; h=——, n=1
4
k,tanhk,d = %, n=0
{ o (20)
ks, tankz,,d=——g—, n>1
R n>0 1)

3n=(h_d)’n—

The unknown coefficients af, b, cf (n =0, 1, 2,**)

can then be determined by invoking the continuity of -

potential and horizontal velocity at x=-a. The continuity

of ¢3 at x=-a requires that

1 ke

L6 f00)+ 3 at f1, 0)=

(22a, b)

Y bicoshky,a fa, (), —d<y<0
n=0

cf fo0)+ Y cicoshks,a f3,(0), ~h<y<—d
n=]

Multiplying (222) f, (¥) by and integrating with

respect to y over [-d, 0], we obtain

bs coshk,,,a N§P = %ek‘” C,,,0+2a§C,,,,, (23a)
n=0

where

0
Con =, f10 O) Fom O')dly

JO fon (Y)fz,,,(y)dyz{N'SZ), m=n (23b)
) 0. m¥+n

If we multiply (22b) by f, () and integrate with
respect to y from -k to -d, the following equation can

be obtained.

m=0:c§N{ = %ek'"" Doo"’z asD,,
n=0

(24a)
m= 0: ¢ coshk,, a N = %ek"a D, o+ Za;?D,,.,.
n=0
where
—d
Drn = [, F120) Fam )y
(24b)

—d _IN®, m=n
[ ) Fan )y { o min
On the other hand, the continuity of d¢3/0x at x=-a

gives

1 Ky <
_Ekloe “ flo(y)+2k1na'§f1n(y):
n=0

=Y ky,bisinhky,a fr, (), —d<y<0
n=0 (25)

=Y ks,cisinhky,a f3,(7), —h<y<-d

n=1

Multiplying both sides of equation (25) by f, (y) and
integrating with respect to y from -h to 0, we obtain

m=0:
1, & < )
- 7kwe*" N§P +k,@§ N§O ==k, bfsinhk, aC,,
n=0
— Y ks, cisinhks, aD, (26)

n=1

m¥*0:

ki@ NAD ==Y k5, b sinhky,a Com
n=0

=Y ks, c¥sinh ks, aDom
n=1
where
0 N, m=n
fin m dy={ ’
L fn 0 fin®) 0

The final matrix equation for af can then be obtained

by substituting equations (23) and (24) into equation (26):
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oo FS
a% F 1 E _l knﬂ( 001) _1)’ m:O
= kN kyoN§
(27a)
- 1 k.«z Ff;o
+ ——e " —"—, m=1,2,3,-
o 2 Kt Nrr‘l) = k1 NAD
where

k, tanhk, aC,,C, &k, taohk, aDp,D

+z 3n

n=0 N,‘Z) n=1 NIP)

(27v)

By solving the above simultaneous algebraic equations,
the unknown constants af can be determined. Subse-
quently, the other unknown constants bj, cf can be
derived from equations (22) and (23) as follows:

(-;'em no+iakscnk)

bi= et , n=0
coshk,,a N2

) 28)
(%ek'ﬂDm+ZaEDok)
k=0
NG

, n=0

1 kma

('2_ Dyt zaank)

coshk,, aN,S )

>1

, B>

Similarly, the asymmetric diffraction potentials in the

three fluid regions are written as

FAW = — w{l o fw(y)+2 afe" £, 00}
%(z)z_%gb;}sinhkbx f2 () (29)

0 =— 1y %) fso(y)+gcﬁ‘ sinhks,  f3, )}

The unknown coefficients a#, b?, c#(n =0, 1, 2, ---)
can be determined in a similar manner by applying the

continuity of potentials and horizontal velocities on x = -a:

oo FA FA
ap+y ap=—t e (TR, m=0
k=0 ION(S) 2 kl()N(S
) (30a)
- F
an +2 =—lek"a 0 m=1,2,3,
k,mN.s1 2 kN

where

- ky, cothky,aCanCpy  DonDoi
- Z N2 aN§
+i ks, cOth ks, @DunD e (30b)
= NP

The remaining unknown coefficients b and cf can

then be determined from:

1 <
(—‘ “C no"'zafcm)
bi=— k=0 , n=0
sinh k,, aN?
. (31)
(leklﬂDoo‘rzalfDok)
= n=0
3 ?
= Ng
1 k.,a — A
(— n 0 + Zak D nk )
F=0 , n=1
sinh &5, aN>
2.2 Radiation Problem
The radiation potential of each mode, ¢, is gover-

ned by (2)-(5) and the following body-boundary con-

dition:

0
W __; of,(x) on y=—d -a<x<a (32)
For simplicity, we split ¢ into symmetric and asym-

metric parts as in the diffraction problem:
(x> ¥)=ix(x, y)+9k(x, y) (33)

The radiation potentials in regions (II) and (II) can
be represented by the sum of homogeneous solution
and particular solution. The homogeneous solutions
look similar to those considered in the diffraction
problem. The symmetric radiation potentials in each

region can be written as

i - ki (x +a)
00 =5 Fage " f10)
n=0

#Px, y)}

(34

i oo iw ~
os=—=% {3 b5 coshk, x f, )+ ¢
@ n=0 &

PO =— % {cifrly )+icg coshky,x f3,(y)
n=1

+§3 5O, y)}
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The asymmetric radiation potentials can be expressed

in a similar manner:
ig ku(x +a)
op0=—L N ape™ " f1,07)
0 n=0

%m-_—{z sithk, £, 0)+ 2> § 42, )} (
35)

PrI=— —‘{cfo( )f3o(Y)+sz3; sinh ks, xf3,(v)

+12.6 400, )}

The particular solutions in (If) and (III) satisfying the
inhomogeneous body-boundary condition can be obta-

ined as

6 3P x, y)=
—i weos (Afx /a)[(A3/a) cosh (Afy /a)+v sinh (Afy /a)]
(Af/a)[«(Af/a)sinh (Afd /a)+v cosh(Afd /a)]

P4, y)=
—i wsin (Afx/a) [(Af/a) cosh (Afy /a)+v sinh (Afly /a )]
(A%/a)[<(Af/a) sinh (Ad /a ) +v cosh (M\d /a)]

37)

—i wcos(Afx/a)cosh[(Af/a)(y +h)]
(A/a)sinh[(A/a)(h -d)] (38)

03I, y)=

i wsin (Afx/a ) cosh [(Ap/a) (v +h)]
(Af/a)sinh[(Af/a)(h -d)] (39)

¢ 4O(x, y)=

The unknown constants in equations (34) and (35)
can be determined in a similar manner to the diffrac-
tion problem using the matching conditions at x =-a.
The simultaneous algebraic equations for the unknown

constants af-4 in region (I} are given by

w  FSA XS,A
aE,,'A+Z ik aii’A“ nl (m=0,1,2,3,-) (40)
k=0 k1mN'S'1) klmN”gl)
where
. o Db 5AQ (=g
Xﬁ,A:%{Ll——s(——y) fim )y
4 39§40 (=a,
+[ TR TED) oy (41

The other unknown coefficients can be determined from

{21 65 F 0y —iazzcnk}

b =— s >0
tn coshk, aN® :
. .
{(F2 7650 £ )y = Y afiDy,}
_ g k=0 n=0
3 Ve (42a)
cp =
" w4~ -
CELL8 80 10y -FaiD)
- , >1
coshk,, aN® :
and
(e J 0 49 f2,()dy zazzc,.k}
A >
by = sinhk, aN® , n= 0
(o I 49 fo )y - Za,kDm}
N(@ ) n=0
= (42b)
{ﬂ (15 40 f.,0)dy - Zazzb }
, n=1
sinhk,, aN®

2.3 Membrane Response
Neglecting viscous (or material) damping, the motion
of membrane is governed by the inhomogeneous one-

dimensional wave equation as follows:

Lo tm@E=—ipolpd(, )-926, )] (@)
where 7, p, and m are the membrane tension, fluid
density, and membrane mass per unit length, respectively.
Substituting 4(x, y)=0p (x,y)+2g,¢jk(x,y),5<x)=

=

i G f;(x) into (43) yields
=

oo

d?
S L) s £,6)-pah=pote) (@4)

where

Pr()=ipo[¢R x, —d)- R x, —d)]

P () =i po [ (x, —d)— ¢ (x, —d)] (44)

Multiplying the above equation by f(x) and integra-
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ting over the membrane, we obtain

YK, - M, +a )-ioh ;)¢ =Fi=1,23, -+
j=t

(45a)
where
a d2f.
Ky =L, 78 e
My=[" mf,e)f (e )dx
a; =Re{%ﬁpm(x)ﬁ(x)dx} (45b)

By =tm ([ pro)f,)x}
F= [ po )i o)

The symbols K'_]_, M,-,- and F, represent the generalized
(modal) stiffness matrix, mass matrix and force vector,
respectively, and a ;; and b ;j are the generalized added-
mass and radiation-damping matrix. Truncating the
series of (45a) at the appropriate term M, we can solve
for the unknown complex amplitudes S corresponding
to each mode. When the membrane is on the free
surface, a hydrostatic correction term needs to be added.

Finally, the reflection and transmission coefficients

can be determined from

M
R, =|[(@§ +a$)+ Y ¢ (af +ag)]e™ |
= (46)

M
T =l(af +a§)+3, ¢ (ak +afle"™ |

The vertical hydrodynamic forces on the horizontal

membrane can be calculated from
F=—ipof [¢9(x, ~d)-¢2(x, ~d)ldx @)
3. EXPERIMENTS

In order to validate the theory and numerical proce-
dure developed in the preceding section, we conducted a
series of experiments in the two-dimensional wave tank
(37 m long, 0.91 m wide, and 1.22 m deep) located at

Texas A&M University. The glass-walled wave tank is
equipped with a dry-back, hinged flap wave maker
capable of producing regular and irregular waves.

The wave elevation was measured with a resistance
wave gauge having an accuracy of +0.1 cm. A probe
measuring incident and reflected wave heights and
another probe measuring the transmitted wave heights
are placed at 9.1 m and 22.9 m from the wavemaker,
respectively. The wave barrier model was placed at 18.3
m from the wavemaker between the two probes.
Regular waves were generated by a user-defined time-
voltage input to the wave maker. The wave frequency
range used in our experiments was from 0.5 to 1.4 Hz.
The wave heights used in our experiments are 6 cm, 8
cm and 10 cm, respectively. The time series of the
generated regular wave packet was sinusoidal with the
beginning and end of the series attenuated in amplitude.

The model membrane (m=0.17 kg/mz) was made of a
thin plastic material resembling a plastic tarpaulin. The
length and width of the membrane were 80 cm and 82
cm, respectively. The ends of the membrane were
attached to two horizontal steel bars which are fixed by
four vertical steel frames clamped to the tank, as
shown in Fig. 1b. The tension on the membrane was

provided by a series of string-weight units. The end-bar

|
)
]
t
)
(U] |
|
|
|
1

L

.t
0 Y
’;;‘ ~1A 3 %lmembrane o] d ! T
wave guage h

wavemaker

()

Fig. 1. (a) Definition sketch for horizontal impermeable
flexible membrane, (b) Experimental set-up of a
submerged horizontal membrane breakwater.
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Table 1. Experimental Conditions.

Exp. #1  Exp. #2  Exp. #3
Membr. Length (cm) 80 80 80
Membr. Width (cm) 82 82 82
Subm. Depth (cm) 16 16 0
Water Depth (cm) 80 80 56
Membr. Tension (kgF) 36 21 36
Wave Frequency (Hz) 0.5-14 0.5-1.4 05-1.4
Wave Amplitude (cm) 3, 4, 5 3 3

of the tensioned membrane was then fixed to a new
location of the steel frame. After a tension is correctly
given, the string-weight units were removed. Table 1
summarizes the principal characteristics of the models
used in our experiments.

The signal of the incident wave train was obtained
as it passes the probe toward the membrane brea-
kwater. Then, the reflected wave train was recorded as
the reflected waves pass the probe again in the
opposite direction. After averaging the wave heights
for the incident and reflected, and transmitted wave
trains, the reflection coefficient Rf and transmission
coefficient 7 can be calculated from the ratio of the
averaged reflected and transmitted wave height to the
averaged incident wave height. We observed that
reflected and transmitted waves were repeatedly
reflected from the wave maker and beach as the time
goes on. In order to minimize the effects of multiple
reflection, the present method was adopted in favor of
moving single probe method or three-probe method
(Isaacson, 1991), which require relatively longer time
to establish a steady state. It is shown in Hagen (1994)
that the present method is more reliable than the
moving-probe or three-probe methods when nonlinear
phenomena or multiple reflections exist. In most of
our surface-piercing-buoy experiments, the errors es-
timated from the energy relation were able to be kept
within 10%. The discrepancy can be attributed to
viscous, gap, and nonlinear effects, and membrane
material damping etc. When the membrane is located
on or very close to the calm water level, the energy-
conservation error is increased due to wave over-

topping over the membrane.

4. NUMERICAL RESULTS AND
DISCUSSIONS

The analytic solutions for impermeable membrane
were developed as described in Sec. 2. First, the con-
vergence of analytic solutions with the number of
natural modes M and eigenfunctions N is shown in Fig.
2. It is seen that the convergence with those parameters
is rapid. In the following, the analytic solutions with M
=5, N=10 were used to investigate the performance of
a horizontal flexible membrane wave barrier for various
design conditions. The membrane mass per unit length
used for these numerical examples was 1.0 kg/mz.

In Fig. 3a and 3b, the transmission coefficients and
hydrodynamic loading on a particular membrane are
plotted for various membrane tensions. It is seen that

there exists an optimal tension for the given design

08
08
Rf
— M=t
0.4 cieeee M=
—— M=10
02 4
(@
0.0
o 1 2 3 4 5 L]
K,h
1.0
03
0.6
Rf
— N=5
[ N N=10
—— N=1§
0.2
0.0
0 1 2 3 4 5 ]
k¢h

Fig. 2. (a) Convergence of reflection coefficient with the
number of natural modes of membrane for the
case d/h=0.2, a/h=0.5, T/pgh’=0.1 and N=10 (N=
number of eigenfunctions), (b) Convergence of ref-
lection coefficient with the number of eigen-
functions for the case d/h=0.2, a/h=0.5, T/pgh’=0.1
and M=5.
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—— Tipgh’=0.05 !
e Tipgh?=0.1 Ry
64 — = Tipgh=0.15 A
T, — Tipgh=intmity | 7/
4
2
0.0 — )
° 1 2 3 4 [ [
k,h
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35
3.0 4
25 4

204

K,h

Fig. 3. Transmission coefficient (a) and hydrodynamic load-
ing (b) of a submerged horizontal membrane
breakwater as function of non-dimensional tension 7/
pgh’ and wavenumber kh for d/h=0.2, a/h=0.5.

condition. The infinite-tension case corresponds to the
diffraction by a rigid horizontal plate which was also
studied by Mclver (1985) for the normal incidence case.
The correctness of the limiting case was also checked
against Mclver's results. In Fig. 3(b), the hydrodynamic
loading for the lower tension (or more flexible ‘mem-
brane) tends to be smaller but has a larger peak near
the resonance region.

In Fig. 4, the membrane tension and width are fixed
and the submergence depth is varied from 0 to 0.3 h.
For this example, the overall efficiency is best for the
case d=0.2 h. The trend of the limiting case d=0 (mem-
brane on the water surface) is quite different from that
of the other curves because only the lower part of the
surface-mounted membrane is exposed to the fluid
loading. In Fig. 5, the amplitudes of membrane res-
ponses (||/A) are plotted for the cases d=0.1 h and

0.2 h as function of dimensionless x coordinate and

Kh

Fig. 4. Transmission coefficients of a submerged imper-
meable membrane breakwater as function of sub-
mergence depth d/h and wavenumber ki for a/h=
0.5, T/pgh’=0.1.

wavenumbers. It is interesting to see that the
performance is still good near kh=1 despite large
sinusoidal membrane motions. The motion amplitudes
are much smaller than the incident wave amplitude
except for the resonance region. The modal amplitudes

for each mode are plotted in Fig. 6 for the case d=0.2 h.

d/h=0.2

Fig. 5. Responses of a membrane (E]/A) as function of
wavenumber ki and horizontal coordinate x/2a
for d/h=0.1, and 0.2, a/h=0.5, T/pgh2=0.1.
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Fig. 6. Modal response amplitude as function of wave-
number k4 and horizontal coordinate x/2a for d/h=
0.2, a/h=0.5, T/pgh’=0.1.

It is shown that the modal amplitudes of higher har-
monics are rapidly decreased.

In the next figure (Fig. 7), the membrane tension and
submergence depth are fixed and the size (width) of
membrane is varied from 4=0.3 h to 0.6 L. Interes-
tingly, the bandwidth of the high performance region is
largest when ¢=0.4 h, which implies that the efficiency

is not necessarily improved with the size of membrane.

00

k;h

Fig. 7. Transmission coefficients of a submerged imper-
meable membrane breakwater as function of
length of membrane a/h and wavenumber ki for
d/h=0.2, T/pgh’=0.1.

However, the non-total transmission region can be
extended to longer waves as the size increases.

Finally, the computational results for impermeable
membrane are compared with the experimental results
conducted in the 2D wave tank located at Texas A&M
University. The measured values generally follow the
trend of computed curves. The same experiment was
conducted for three different incident wave amplitudes,
and the general trend looks similar. It can be seen in
Fig. 8 that the wave blocking performance is indeed
good in the range 0.8 <f< 1.3 (Hz), as predicted by the
present linear hydro-elastic theory. We can notice that
its effect is the largest near the resonance region
(f=0.35 Hz). The discrepancy between predicted and

f(H2)

Fig. 8. Comparison of analytic results with measured values
(Exp. 1) for a submerged horizontal membrane
breakwater; analytic solutions ( ), experimental
results R, (dark) and 7, (white) (circle: 3 cm, triangle:
4 cm, square: 5 cm).
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measured results can be attributed to the uncertainties
pertaining to the amount of viscous (or material)
damping, nonlinear effects, gap or end effects etc. In
particular, we observed during the experiment that the
membrane response was not perfectly uniform in the y
direction. Fig. 9 shows similar comparisons for smaller
membrane tension. Again, the measured values gener-
ally follow predicted values. The wave blocking effici-
ency in this case is very good when f> 0.8 Hz and near
f=~03 Hz. The next figure (Fig. 10) shows similar
comparisons for the surface-mounted membrane. The
performance of this particular design is not good unless
f>12Hz. For this particular case, the wave over-
topping over the surface-mounted membrane adds more

uncertainty with regard to the validity of the present

00 T
0.0 2 4 8 8 10 1.2 1.4

f(Hz)
Fig. 9. Comparison of analytic results with measured values
(Exp. 2) for a submerged horizontal membrane brea-

kwater; analytic solution ( ), experimental
Results R; (dark) and T, (white).

f(Hz)

Fig. 10. Comparison of analytic results with measured
values (Exp. 3) for a floating horizontal membrane
breakwater; analytic solution (: ), experimental
results R; (dark) and T, (white).

theoretical model. Despite the additional uncertainty,
the trend of experimental values follows reasonably

that of predicted values.

5. SUMMARY AND CONCLUSIONS

The interaction of monochromatic incident waves
with a horizontal flexible membrane was investigated
in the context of two-dimensional linear hydro-elastic
theory. In Sec.2, analytic diffraction and radiation solu-
tions for a submerged impermeable horizontal mem-
brane were obtained by matching the eigenfunction
solutions in the three fluid domains. The linear hydro-
elastic theory was then compared with a series of
experiments conducted with an impermeable membrane
and a reasonable agreement was obtained.

Using the developed computer program, the perfor-
mance of surface-mounted or submerged impermeable
horizontal membrane wave barriers was tested with
various membrane tensions, widths, and submergence
depths. It was seen that an optimal combination of
design parameters existed for given water depths and
wave characteristics. From the present study, it can be
concluded that a properly designed horizontal flexible
membrane can be a very effective wave barrier and its
optimal design can be found through a comprehensive
parametric study using the developed theory and com-
puter programs. To further verify its practicality, a
more rigorous nonlinear time-domain numerical analy-

sis and larger-scale experiments need to be done.
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