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Engineering Economy Interpretation of Economic

Production Cycles in an Imperfect Production System
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1. Introduction

In the inventory literature, the economic production quantity model has been analyzed
under various conditions (See Hax and Candeal5]). The majority of these researches are
based on the approach that minimizes the average cycle costs ignoring the time value of
money. As discounted cash flow analysis is strongly recommended and often used in
capital budgeting and investment analysis, the economic production quantity models can
also be formulated and analyzed within the net present value framework.
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Problems of this type have been discussed by several authors, including Dohi et al.[4],
Chung[1], Chung and Lin[2,3], and Moon and Yun[89]. All of these researches are based
on the assumption that production process always produces items of acceptable quality.
However, as Lee and Park[6] indicated, production quality is not always perfect, and is
usually dependent on the state of the production process.

In this paper, we analyze the economic production quantity model in an imperfect
production system based on the net present value framework. This may be essentially an
extension of the models analyzed by Chung[l] and Lee and Rosenblatt[7]. We formulate the
given problem, and propose a simple algorithm to compute the optimal production cycle
time.

2. Problem formulation

Consider the production of a single item on a single machine or production process. The
usual assumptions of the classical economic production quantity model are also used here.
That is, we assume that demand is constant and continuous and that all the demand must
be met. In addition to the classical assumptions, we assume that although the production
process starts to produce a lot in an ‘in-control’ state, it shifts to an ‘out-of-control’ state
after exponentially distributed production time of mean 1/u. As Lee and Rosenblatt[7]
described, the exponential assumption for the elapsed time of the ‘in-control’ state are
commonly founded in the quality control literature.

For convenience, we use notation similar to Lee and Rosenblatt[7]. The following notation
will be used as parameter.

P = the production rate in units per year,

D = the demand rate in units per year,

K = set-up cost for each production run including the restoration of the
production process,

C = unit production cost,

= unit selling price

S = cost incurred by producing a defective item, such as cost of rework, loss of
goodwill, etc.,

@ = percentage of defective units produced when the process is in the
out-of-control state,

r = interest rate of a continuous type.

Decision variables are as follows :
Q = the production quantity,
T = the cycle time for each production lot.

A discounted cash flow approach is adopted to analyze and optimize the discounted cost
in a given situation.
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Present Value of Cash Flows for the First Cycle

As actual production time is DT/P, the present value of the production cost is obtained
by

DT/P _,br
fo CPe‘"dt=—C§[1—e P (1)

The present value of the income is obtained by

T
—fo De~"dt = ——IrQ[l—e"T] )

Define T to be the elapsed time of a shift from the in-control state to the out-of-control

state since the beginning of the production. Then, present value of the cost incurred by the
defective items is

DT DT
P P . e
j{; . SaPe " dt pe dr (3)
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Thus, from the equations (1), (2), and (3), the present value of cash flows for the first
cycle is

_,br
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Present Value Cash Flows of an Infinite Planning Horizon

Suppose that the typical production cycle described above is repeated infinitely, then the
present value of the total cash flows is
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TUT) = FC(D*[1+e T+e ¥T+....]

- _FC(D) __
[1—-e "]

The first derivative of TC(T) with respect to T, say TC(T) is as follows

—-rT

_ e
TC(D = —~75=n7 AD

where

o po RS
AD = (1—e")iDe (C+ Sa)— DSae ]

+P[7—K+C—egr%T—(C+ Sa) + Sa—=~ e_(rﬂ)ppi+Sa—‘u—]
P r+u r+u

Note that TC(T) and f{T) have the opposite signs. By setting fiT) equal to 0, we can
obtain the optimal cycle length T .

Proposition 1

f(T) = 0 has at least one solution between T = 0 and T = oo,

proof

(1) fi0) = rK >0

a1~ 2)r H1-PIT- B
2) y‘lgoﬂn=;1;xg[—D(c+Sa)e P +DSee ”P7]+P(’—§+C+%”‘;)

-8, ~uB rK S
_ Iy . 7K Sap
[?_Q;De q[%ggo{(c+8a)+3ae 7}]+P( P et

By (1) and (2), f0) > 0 and f{oo) < 0. Thus f{T) = 0 has at least one solution between
T=0and T = o, [ |
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Proposition 2

AT) is monotone decreasing function for all T > 0.

proof
2L —~(r+ 2L
(D = —re’T[De "P(C+ Sa)— DSae T ]

. e Y.
+(1—e'7)[—r—gz(C+Sa)e Pt r+PSaDze (rti7p

DT
+vDe P (C+ Sa)— SarDe

(r+,u)%:

- 2T
= (1—eNrDe  F o(D

D
where g(7) = (C+Sa)(1—%)—Sa[l~—ﬁ%‘@Q]e “PI

As (1-¢™) is always negative for all T > 0, f(7T) has the opposite sign to g(7T). By the
way,

£(0)

D + D
(C+Sa)(1——§)—Sa[1——(1—[—,EL]

- _D Dy
= C1—-p)+Sap; >0

: - _D
limg(T) = (C+Sa)1—F) >0
Moreover, as

g(n = %[ {r+)D D] hgT,

g(T) is monotone (decreasing or increasing) function. Thus, g(T) is always positive and
f(T) is always negative. This complete the proof. |

By Proposition 1 and 2, fAiT) has a unique solution T* > 0 and TC(T) has the minimum
value at this point.
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3. Solution Algorithm and Numerical Example

Note that r is the interest rate of a continuous type and 4 is failure rate when production
is in progress. Thus, in most cases r and ¥ are very small compared with 1 so that it is
reasonable to approximate the exponential functions in f/T) as follows.

2
e—#x: 1_#x+__(.§'5_r)_

2 2
SUrRT o | (g ) I X

e

Such an approximation has been frequently used in the quality control and engineering
economy literature to simplify the mathematical analysis involved. For detail discussion of
the above approximation, we can refer any Calculus textbook. For example, we can
compute e to an accuracy of 107 just with 3 terms in Taylor’'s formula. After some
tedious mathematical manipulation using above McClaurin series approximation, f(T) is
approximated as follows.

fak D) =[Sl CED (- By 72 i
— —L[S4D - Dok

Setting fup(T) equal to zero yields

T, - \[ 2K 5)
a SauD D
D[-2%2 + cr1- )]

On the ground of the Proposition 1 and 2, if we want to get the exact optimal solution, we
can solve equation f{7) = 0 numerically using bisection method as follows.

Solution Algorithm

Stepl:Lete >0 xL =0, and xg = T app.
Step 2 : If |fixp)| < &, T" = xp and stop. Otherwise, go to step 3.
Step 3 : If fixg) < 0, go to step 4.
If fixr) > 0, set xL = xg and xg = 2xg, and go to step 4.
Step 4 : X = (xz + xr)/2.
Step 5 : If |fix’)| < & T' = x° and stop. Otherwise, go to step 6.
Step 6 : If fix’) >0, set x1 = x. I fix') <0, set xp = x". Go to step 4.
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Numerical Example

Suppose that r = 0.2, P = 1000 (units per year), D = 600 (units per year), K = $100, 1 =
05,0 =07, S = $05, C = $5, '

Then, by equation (5), we can obtain the approximated optimal production cycle time T .
= 0.812 directly.

Taking € = 001 and following the above algorithm, we can obtain the exact optimal
production cycle time T° = 0.826 iteratively, which incurs total annual cost TC(0.826) =
$10472 (excluding income by letting I1=0).

The cycle time becomes T = 0.913 by the well known classical model of perfect production
system, which incurs total annual cost TC(0.913) = $11172. We note that, if the optimal
production cycle time of this paper is used instead of the classical model in our example,
the cost saving is 6.27%.

4. Concluding Remark

In this paper, the economic production quantity model in an imperfect production system
was analyzed based on the net present value framework. We formulated the given problem,
derived an approximated solution, and proposed a simple algorithm to compute the optimal
production cycle. This model improved the practicality of the assumption about the
production system, which has been usually assumed to produce items of acceptable quality.
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