THE REMARK on THE SELF-SIMILAR SETS -자기 동형 집합에 관하여-

Yoo, Heung Sang * 유흥상 Kim, Yong Sung ** 김용성

요 지

먼저 Cantor dust 의 성질 및 유사성, 축소인자, 불변집합, δ - covering, Box counting 차원 등에 대한 정의를 하였다, $\{f_i\}_{i=1}^\infty$ 를 \mathbb{R}^n 상에서 개집합 조건을 만족시키는 축소인자 C_i 에 대한 유사성 이라하자. F_i 를 $\{f_i\}_{i=1}^\infty$ 에 대한 \mathbb{R}^n 상의 불변집합, 즉, F_i = $\bigcup_{i=1}^\infty f_i(F)$ 를 만족시키는 집합이라 하자. 이때, $\sum_{i=1}^\infty C_i^2 = 1$, $0 < C_i < 1$ 일 때, dim G_i G_i F = dim G_i F = G_i 임을 보임으로서, 자기동형집합의 후랙탈 차원에 대하여 논의 하고자 한다.

1. Introduction and preliminaries

Mandelbrot observed the study of the fractal from the existence of a "Geometry of Nature". His studies have led us to think in a new scientific way about the edge of clouds. Fractal is to study the method of representation of many natural phenomena and provide the general framework for non-smooth and irregulars. The purpose of this paper

^{*)} Dept. of Inf. Comm. Kun-San National Univ.

^{**)} Dept. of Math. Jeon Ju Univ.

is to prove some properties of fractals and study its dimension. The triadic Cantor set is the limit C of the sequence C_k of sets. We will define the limit to be the intersections $C = \bigcap_{k \in \mathbb{N}} C_k$ is an official fractal. These are several properties of Cantor set ([1], [2], [10], [12]).

- [1] Cantor set contains no intervals.
- [2] Cantor set has no isolated points.
- [3] Cantor set is closed; that is, if $a \in \mathbb{R}$ has the property that every interval of the form $(a-\varepsilon \ a+\varepsilon)$ intersects C, then $a \in \mathbb{C}$.

We think functions as the following. Let (X,d) be a metric space. A self-map $f: X \to X$ is called contraction mapping on X if there is a constant 0 < c < 1 such that $d(f(x), f(y)) \le cd(x,y)$ for all $x, y \in X$. Such number c is called a contractivity factor for f.

(1-1) If d(f(x), f(y)) = cd(x,y), then f is called a similarity. Now let $\{f_i\}_{i=1}^{\infty}$ be contractions on X. We call a subset A of X invariant for $\{f_i\}_{i=1}^{\infty}$ if $A = \bigcup_{i=1}^{n} f_i(A)$. Such invariant sets are often fractals ([1],[11]). Let $A \subset \mathbb{R}^n$ and $\delta > 0$. A covering $\mu = \{U_a\}_{a \in A}$ of A is called a δ -cover if each U_a is a set of diameter r_a ($0 < r_a < \delta$). For s > 0, define $H_{\delta}^s(A) = \inf \{\sum_{a \in A} |U_a|^s; \mu = \{U_a\}_{a \in A} \text{ is a } \delta$ -covering of A. Clearly, $H_{\delta}^s \leq H_{\delta}^k$, if $0 < \delta < \delta$. Therefore, $\lim_{\delta \to 0} H_{\delta}^k(A)$ exist in the extended real number system.

- 1°. Let μ be a mass distribution on \mathbb{R}^n and let $F \subset \mathbb{R}^n$ be a bounded subset. For some $s \ge 0$, assume that there are numbers c > 0 and $\delta > 0$ such that $\mu(U) \le c |U|^s$ for each set U with and $|U| \le \delta$, then $H^s(F) \ge \frac{\mu(F)}{c}$ and $s \le \dim_H F \le \dim_H F \le \dim_H F \le \dim_H F \le \dim_H F$.
- 2^{0} . Let $\{V_{a}\} \in \Lambda$ be a collection of disjoint open subsets of \mathbb{R}^{n} for which each V_{a} contains a ball of radius ar and is containd in a ball of radius br. Then any ball B of radius r intersects at most $(1+2b)^{n} a^{n}$ of the closures $\overline{V_{i}}$.
- 3° . If $J_{\circ} = [a, b]$, for $o \in \{0, 1\}$, then set $J_{\sigma * \circ} = [a, a + x (b-a)]$ and $J_{\sigma * 1} = [a + y(b-a), b]$, where the point x, y is chosen from the triangular region $\triangle = \{(s,t)| 0 \le s \le t \le 1\}$ according to the uniform distribution.

4°. Let \mathbb{R}^m is a Euclidean space and a nonempty compact subset J is the closure of its interior in \mathbb{R}^m and (\mathcal{Q}, Σ, P) is a probability space $J = \{J_\sigma \mid \sigma \in N' = \bigcup_{n=0}^\infty N^n\}$ satisfying three properties. (1) $J_\phi(\omega) = J$ for almost all $\omega \in \mathcal{Q}$, $\forall \sigma \in N'$, for allmost ω , if $J_\sigma(\omega)$ is nonempty, then $J_\sigma(\omega)$ is geometrically similar to J. (2) w: a point, for all $\sigma \in N'$, $J_{\sigma *1}(w)$, $J_{\sigma *2}(w)$, $J_{\sigma *3}(w)$, \cdots is a sequence of nonoverlapping subsets of $J_\sigma(\omega)$. (3) The random vectors $\mathfrak{T}_\sigma = \{T_{\sigma *1}, T_{\sigma *2}, T_{\sigma *3}, \cdots > \}$, $\sigma \in N^*$, are i.i.d., where $T_{\sigma *n}(\omega)$ equals the ratio of the diameter of $T_{\sigma *n}(\omega)$ to the diameter of $J_\sigma(w)$ if $J_\sigma(w)$ is nonempty.

2. Examples of Fractal Dimensions

First, we will show the dimension the triadic Cantor set. This example is known as the Cantor set. Mandelbrot has called it the Cantor set. Let C_0 be the closed unit interval [0, 1]. Then the set C_1 is obtained by removing the middle second from [0, 1] leaving $[0, \frac{1}{4}] \cup [\frac{3}{4}, 1]$. The next set C_2 is defined by removing the middle second of the two intervals of C_1 . This leaves $C_2 = [0, \frac{1}{16}] \cup [\frac{3}{16}, \frac{4}{16}] \cup [\frac{12}{16}, \frac{13}{16}] \cup [\frac{15}{16}, 1]$ and so on. Here, dimension of sets C_n using definition of similarity, is near to real number 0.5 and the dimension of the Sierpinski gasket is similarly. The example of the above become to fractals.

3. The Self-Similar Sets

Proposition 3.1. Let c_i be constants satisfying $0 < c_i < 1$ ($i = 1, 2, 3, \dots, n$), and inf c_i is not zero. Then there is a unique nonnegative number s_i such that $\sum_{i=1}^{n} c_i^s = 1$ further, the number s_i is 0 if and only if $1 \le i < \infty$.

Proof. [22] pp 248 - 253.

Theorem 3.2. Let $\{f_i\}_{i=1}$ be the similarities on \mathbb{R}^n with contractivity factors c_i which satisfy the open set condition on \mathbb{R}^n . If F is an invariant subset of \mathbb{R}^n

with respect to $\{f_i\}_{i=1}^{\infty}$. i.e., $F = \bigcup_{i=1}^{\infty} f_i(F)$. Then $\dim_B F = \dim_B F = s$, where $\sum_{i=1}^{\infty} c_i^s = 1, \quad 0 < c_i < 1.$

Proof. Assume that (3-1) holds. Put A(i_1, i_2, \dots, i_k) = ($f_{i_1} \circ f_{i_2} \circ \dots \circ f_{i_k}$)(A) for any subset A $\subset \mathbb{R}^n$. Let J_k be the set of all k-term sequences (i_1, i_2, \dots, i_k) with $1 \le i_j < \infty$. Then $F = \bigcup_k F(i_1, i_2, \dots, i_k)$. Therefore

$$\begin{split} \sum_{f_{k}} & | \mathbf{F}(i_{1}, i_{2}, \cdots, i_{k}) | |^{s} = \sum_{f_{k}} (|c_{i_{1}} \cdots c_{i_{k}}|)^{s} |F|^{s} \\ & = (\sum_{i} c_{i_{i}}^{s}) \cdots ((\sum_{i} c_{i_{k}}^{s}) |F|^{s} = |F|^{s}. \end{split}$$

Choose k such that

$$| F(i_1, i_2, \cdots, i_k) | \leq (\sup c_i)^k \leq \delta$$

for any $\delta > 0$, then $H^{s}_{\delta}(F) \leq |F|^{s}$ and so $H^{s}(F) \leq |F|^{s}$. Let us consider the lower bound. Let I be the set of all infinite sequences $I = \{ (i_{1}, i_{2}, \cdots) : 1 \leq i_{j} < \infty \}$, and let $I_{i_{1}, \dots, i_{k}} = \{ (i_{1}, \cdots, i_{k}, q_{k+1}, \cdots) : 1 \leq q_{j} < \infty \}$ be the cylinder consisting of those sequences in I with initial terms $(i_{1}, i_{2}, \cdots, i_{k})$. We define a mass distribution μ on I by μ $(I_{i_{1}, \dots, i_{k}}) = (c_{i_{1}} \cdots c_{i_{k}})^{s}$. Then since

$$(c_{i_1} \cdots c_{i_k})^s = \sum_{i=1}^{\infty} (c_{i_1} \cdots c_{i_k} c_i)^s,$$

$$\mu (I_{i_1}, \dots, i_k) = \sum_{i=1}^{\infty} \mu (I_{i_1, i_2}, \dots, i_{k,t}).$$

Accordingly, μ is a mass distribution on subsets of I with μ (I) = 1. Let us transfer μ to $\overline{\mu}$ on F by putting $\overline{\mu}$ (A) = μ { (i_1 , i_2 , \cdots); $x_{i_1, i_2, \cdots} \in A$ } for each subset A of F, where $x_{i_1, i_2, \cdots} = \bigcap_{k=1}^{\infty} F$ (i_1 , i_2 , \cdots , i_k). Thus $\overline{\mu}$ (F) = 1.

The mass distribution μ satisfies 1^0 . By assumption, let $V \subset \mathbb{R}^n$ be a nonempty bounded open subset which satisfies the open set condition for $\{f_i\}_{i=1}^{\infty}$. Since

$$\overline{V} \supset \bigcup_{i=1}^{\infty} f_i(\overline{V}), f^k(\overline{V})$$

converges to F. Here f^k denote the k-times composition of f and the map f is defined by $f(A) = \bigcup_{i=1}^{\infty} f_i(A)$. In particular, $\overline{V} \supset F$ and

$$\overline{V}(i_1, i_2, \cdots, i_k) \supset F(i_1, i_2, \cdots, i_k)$$

for each finite sequence (i_1, i_2, \cdots, i_k) . Let B={ B, is any open ball | r is radious of 0 < r < 1}. We shall estimate $\overline{\mu}$ (B) by considering the sets V (i_1, i_2, \cdots, i_k) with diameter comparable with that of B and with closure intersecting $F \cap B$. We are define the random set

$$K(\omega) = \bigcap_{i=1}^{\infty} \bigcup_{\sigma \in \mathcal{N}^{i}} J_{\sigma}(\omega) = \bigcap_{i=1}^{\infty} \bigcup_{\sigma \in \mathcal{N}^{i}} J_{\sigma}(\omega).$$

If K is nonempty with positive probability, K has Hausdorff dimension a, where a is the least $\beta > 0$. i.e. E ($\sum_{i=1}^{\infty} T_i^{\beta}$) ≤ 1 . Let λ be m-dimensional Lebesgue measure and define a function $\psi : [0, \infty] \Rightarrow [0, \infty]$ by

$$\psi$$
 (β) = E ($\sum_{i=1}^{\infty} T_i^{\beta}$) = E ($\sum_{i=1}^{\infty} T_{\sigma*_i}^{\beta}$), where $\sigma \in N$.

The sets J_o satisfies 4^0 .

$$\sum_{n=1}^{\infty} \bigwedge(\inf(c_n)) \leq \sum_{i=1}^{\infty} \lambda(\inf(J_i))$$

$$\leq \lambda \pmod{J_i} \leq J_{i_1} J_{i_2} \cdots J_{i_k} \cdots \leq cr$$
, for all $c > 1$.

Let Q denote the finite set of all sequences obtained in this way. Then there is exactly one value of k with $(i_1, i_2, \cdots, i_k) \in Q$. Since $V(1), \cdots, V(m)$ are disjoint, $\{V(i_1, i_2, \cdots, i_k, \iota): 1 \le l \le m\}$ are disjoint for each $(i_1, i_2, \cdots, i_k) \in Q$ and so $\{V(i_1, i_2, \cdots, i_k, \iota): (i_1, i_2, \cdots, i_k) \in Q \text{ and } 1 \le l \le m\}$. Similarly, $F \subset \bigcup_{Q} F(i_1, i_2, \cdots, i_k) \subset \bigcup_{Q} \overline{V}(i_1, i_2, \cdots, i_k)$. Choose d_1 and d_2 so that V contains a ball of radius d_1 and is contained in a ball of radius d_2 . Then, for each $(i_1, i_2, \cdots, i_k) \in Q$, the set $V(i_1, i_2, \cdots, i_k)$ contains a ball of radius $c_{i_1} c_{i_2} \cdots c_{i_k} d_1$ and therefore a ball of radius (i_1, i_2, \cdots, i_k) contains a ball of radius (i_1, i_2, \cdots, i_k) denote the set of those sequences (i_1, i_2, \cdots, i_k) in Q such that P intersects P in P in P sequences in P in P sequences in P in P in P in P sequences in P in P in P in P in P sequences in P in P in P in P in P sequences in P in

$$\overline{\mu}$$
 (B) = $\overline{\mu}$ (F \cap B) $\leq \mu$ { (i_1, i_2, \dots); $x_{i_1, i_2, \dots} \subset F \cap B$ } $\leq \mu$ { $\bigcup_{i_1, i_2, \dots, i_i}$ }.

Since, if $x_{i_1, i_2, \dots} \in F \cap B \subset \bigcup_{Q_i} \overline{V}(i_1, i_2, \dots, i_k)$ then there is an integer k such that $(i_1, i_2, \dots, i_k) \in Q_1$. Thus

$$\overline{\mu}(B) \leq \sum_{Q_1} \mu(\|I\|_{i_1, |i_2| + \cdots + |i_s|}) = \sum_{Q_1} (\|c\|_{i_1} + \cdots + c\|_{i_s})^s \leq \sum_{Q_1} r^s \leq r^s q.$$

Since any set U is contained in a ball of radius |U|, $\overline{\mu}$ (U) $\leq |U|^s q$. Therefore, $H^s(F) \geq q^{-1} > 0$ by 2^0 , and $\dim_H F = s$. Inductively, $\sum_Q (c_{i_1} \cdot \cdot \cdot \cdot c_{i_k})^s = 1$ by (3-1). If Q satisfying the condition of the Hausdorff metric, then Q contains at most $(\min_1 c_1)^{-s} r^{-s}$ sequences. For each sequence $(i_1, i_2, \cdots, i_k) \in Q$,

$$|\overline{V}(i_1, i_2, \cdots, i_k)| = c_{i_1} \cdots c_{i_k} |\overline{V}| \leq r |\overline{V}|$$

and so A is covered by $(\inf_i c_i)^{-s} r^{-s}$ sets of diameter $r \mid \overline{V} \mid$ for each r < 1. By largest number of disjoint balls of radius δ with center in F, $\overline{\dim}_B F \leq s$, where s is the Hausdorff dimension.

4. Non-Integral Dimension of Irregular Sets

[* 1] Fractal Dimension

Definition 4.1. Let (X, d) be a complete metric space and let $A \subset X$ be a nonempty compact subset. For each $\varepsilon > 0$, let $N(A, \varepsilon)$ denote the smallest number of closed balls of radius $\varepsilon > 0$ needed to cover A. If $D_A = \lim_{\varepsilon \to 0} \frac{\ln(N(A, \varepsilon))}{\ln(\frac{1}{\varepsilon})}$ exists, then

 D_A is called the box counting dimension of A. And we will also say "A has fractal dimension D_A ". The intuitive idea behind fractal dimension is that a set A has fractal dimension D_A if N(A, ε) = $c \cdot \varepsilon^{-D_A}$ for some positive constant c. From this we obtain the following ([2], [12]);

$$D_A = \lim_{\varepsilon \to 0} \frac{\ln(N(A, \varepsilon)) - \ln c}{\ln(\frac{1}{\varepsilon})}.$$

[* 2] Hausdorff Dimension

Definition 3.3. $\dim_H F = \inf \{ s : H^s(F) = 0 \} = \sup \{ s : H^s(F) = \infty \}$ $H^s(F) = \{ \begin{array}{ccc} \infty & \text{if} & s & \leq & \dim_H F \\ 0 & \text{if} & s & > & \dim_H F \end{array} \}$

For box counting dimension we know that

$$\lim \inf_{\varepsilon \to 0} \operatorname{N}(A, \varepsilon) \varepsilon^{s} = \{ \begin{array}{ccc} \infty & \text{if} & 0 & \leq & s & \leq & \dim_{B}(A) \\ 0 & \text{if} & \dim_{B}A & \zeta & s & \zeta & \infty \end{array} \right..$$

The box counting dimension is also defined like this.

Proposition 3.4. Let $A \subset \mathbb{R}^n$ and let constants c > 0 and a > 0 are given. Then if $f: A \to \mathbb{R}^m$ is a mapping for which $|f(x) - f(y)| \le c |x - y|^a$ for all x, $y \in A$. Then for each s, $H^{\frac{s}{a}}(f(A)) \le c^{\frac{s}{a}} H^s(A)$.

Proof. Let $\{U_i\}$ be a δ - cover of A. Then $\{f(A \cap U_i)\}$ is an ϵ - cover of f(A) since $|f(A \cap U_i)| \le c |U_i|^a$ where $\epsilon = c \delta^a$. Then

$$\sum_{i} |f(A \cap U_{i})|^{\frac{s}{\alpha}} \leq c^{\frac{s}{\alpha}} \sum_{i} |U_{i}|^{s}$$

and so $H_{\delta}^{\frac{s}{a}}(f(A)) \leq c^{\frac{s}{a}} H_{\delta}^{s}(F).$

Therefore, taking $\delta \rightarrow 0$, we have $H^{\frac{s}{\alpha}}(f(A)) \le c^{\frac{-s}{\alpha}} H^{s}(A)$.

REFERENCES

- [1] L.V. Ahlfors, Complex Analysis, McGraw-Hill New-York, (1979).
- [2] M.F. Barnsley, Fractal Everywhere, Academic Press, (1988).
- [3] _____ and S.G. Demcko, Iterated schemes and the global construction of fractals, Proc. R. Soc A399 (1985), 243 275.
- [4] _____, Chaotic Dynamics and Fractals, Academic Press New York, (1986).
- [5] A. F. Beardon, On the Hausdorff dimension of general Cantor sets, Proc. Camb. Phil. Soc. 61 (1965).
- [6] M. V. Berry and Z. V. Lewis, On the Weierstrass-Mandelbrot fractal function, Proc. R. Soc. A370 (1980).
- [7] A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets, (1928).
- [8] _____, On fundamental geometric properties of plane line sets, J. London Math. Soc. 39 (1964) 441-448.
- [9] F.M. Dekking, Recurrent sets, Adv. Math. 44 (1982), 78-104.
- [10] R.L. Devaney, An introduction to chaotic dynamical systems, Benjamin cummings Publishing company, (1986).
- [11] K.J. Falconer, The geometry of fractal sets, Cambridge Univ. Press Cambridge, (1985).
- [12] _____, The Hausdorff dimension of distance sets, Mathematika 32 (1985c) 206-212.
- [13] J. Feder, Fractals, Plenum Press New-York, (1988).
- [14] A. Gerald, Edgar measure, topology and fractal geometry, Springer-Verlag New-York.
- [15] J. E. Hutchinson, Fractals and self similarity, Indiana Univ. J. Math. 30 (1981) 713-747.
- [16] S. A. Kline, On curves of fractal dimensions, J. London Math. Soc. 20 (1945) 79-86.
- [17] B. B. Mandelbrot, Self-affine fractal sets, In fractals in Physico L. Pietroner and E. Tosatti, editors Elsevier Science Publ., (1986).
- [18] Mauldin R. D. and William S. C., Random recursive constructions: asyptotic geometric and topological properties, Trans. Am. Math. Soc 295 (1986) 325-346.
- [19] P. A.P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Camb. Phil. Soc. 42 (1946) 15-23.
- [20] C.A. Rogers, Hausdorff measures, Camb. Univ. Press, (1970).
- [21] S.J. Taylor, The measure theory of random fractals, Math. Proc. Camb. Phil. Soc. 100 (1986) 383-406.
- [22] Stringer, Verlag, Fractals for the class room, Nation Council of teachers of Mathematics Advisory Board. (1992).