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THE REMARK on THE SELF-SIMILAR SETS
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1. Introduction and preliminaries

Mandelbrot observed the study of the fractal from the existence of a ‘‘Geometry of
"', His studies have led us to think in a new scientific way about the edge of

Fractal is to study the method of representation of many natural phenomena and
The purpose of this paper

Nature

clouds.
provide the general framework for non-smooth and irregulars.
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is to prove some properties of fractals and study its dimension. The triadic Cantor set is
the limit C of the sequence C, of sets. We will define the Ilimit to be the

intersections C = QN C, 1is an official fractal. These are several properties of

Cantor set ([1], [2], [10], [12]).
[1] Cantor set contains no intervals.
[2] Cantor set has no isolated points.

[3] Cantor set is closed ; thatis, if a R has the property that every interval of the
form (ea—& a+e¢ ) intersects C, then a € C.

We think functions as the following. Let (X,d) be a metric space. A self-map f : X— X
is called contraction mapping on X if there is a constant 0< ¢ <1 such that d(f(x), f(y))
< cd(xy) for all %X, v € X. Such number c¢ is called a contractivity factor for f.

( 1-1 ) If df(x), f(y)) = cd(x,y), then f is called a similarity. Now let { f,} =, be
contractions on X. We call a subset A of X invariant for { f,} =, if A= Q] f.(A)

Such invariant sets are often fractals ([1] ,[11]). Let A< R*” and 6 > 0. A
covering # = { U,)} 4ea of A 1is called a d-cover if each U, 1is a set of diameter
ra 0< 7, <8). For s>0, define H3 (A) = inf { §A| Ud s g ={ U, seq is a
6 -covering of A }. Clearly, Hi< H% if0< & < & Therefore,  Lim H 4(A)

exist in the extended real number system:.

1°%°  Let # be a mass distribution on R”™ and let FC R”"™ be a bounded subset.
For some s= 0, assume that there are numbers ¢ > 0 and é > 0 such that ux(U) <

cll ° for each set U with and |1 <, then H‘(F)Z—ACEl and s <dim zF <
dim gF < dim gF.

2% Let { V,] €A be a collection of disjoint open subsets of R” for which each V,
contains a ball of radius ar and is containd in a ball of radius br. Then any ball B of
radius r intersects at most (1+28)" a” of the closures V..

3¢ If J,=1[a bl, for ¢ = {0, 1}, then set Jx, = [a, a + x (b-a)] and Js =

[a + y(b-a), bl where the point X, y is chosen from the triangular region A =
{ (st)] 0<s<t<1 } according to the uniform distribution.
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4° Let R™ is a Euclidean space and a nonempty compact subset J is the closure of

its interior in R™ and (2, 3,P) is a probability space ] = { J, | o N = Qo N™}
satisfying three properties. (1) J4w =] for almost all w e Yo N,
for allmost w, if J,(w) is nonempty, then J,(w) is geometrically similar to J.

(2) w: a point, for all oe N, Tax1 (), Jowo(w), Joma(w), « - + -is a sequence of
nonoverlapping subsets of  J,{ w). (3) The random vectors T ,=
< Totr» Toxzs Toxz, = =+ +>, o= N7, are iid, where T x,(®) equals the ratio of

the diameter of 7T ,,( @) to the diameter of Jo(w) if J,(w) is nonempty.
2. Examples of Fractal Dimensions

First, we will show the dimension the triadic Cantor set. This example is known as the
Cantor set. Mandelbrot has called it the Cantor set. Let C, be the closed unit

interval [0, 11. Then the set C, is obtained by removing the middle second from [0, 1]

leaving [0, —i—] Ul % 1). The next set C, is defined by removing the middle second
. . _ 1 3 4 2 13
of the two intervals of C,. This leaves C, = o, 6 1U 1616 1U I 16 16 1U

[-%g—, 1] and so on. Here, dimension of sets C, wusing definition of similarity , is

near to real number 05 and the dimension of the Sierpinski gasket is similarly. The
example of the above become to fractals.

3. The Self-Similar Sets

Proposition 3.1. Let ¢, be constants satisfying 0 < ¢, <1(i=1,2 3 +---,n),

and inf ¢, 1is not zero. Then there is a unique nonnegative number s such that

Zl ¢¥=1 further, the number s is 0 ifandonlyif 1 < i <o,
Proof. [22] pp 248 - 253.

Theorem 3.2. Let { 7,} ;=; be the similarities on R " with contractivity factors c,

which satisfy the open set condition on R”  If F is an invariant subset of R”
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with respect to { 7,} =,. ie, F = Ql fiF). Then dimyz F = dimgF = s, where

(3-1 Zlcf=l, 0< ¢, <1

Proof. Assume that (3-1) holds. Put A( ¢y, 45, » =+, 8 = fi= fio < fi)A)

for any subset A c R” ., Let J, be the set of all k-term sequences

( #y,49,+++,4) with 1 < i, <o, Then F =L) F( iy, i5, * + +, iy). Therefore
Z I F( iz,iz,---,ik)I‘=§](c,~,---0.~,)‘ |F

= (Zc PR '((Z“Csi,) |A* = |F°
Choose k such that
|FC 4y, 45, -, 80 | < (sup ¢, ) <6

forany 6§ > 0, then Hj (F) < |Fl® and so HF) < |F*® . Let us consider the
lower bound. Let I be the set of all infinite sequences I ={ ( ¢, , ¢35, +):
1< i, < oo}, andlet I, ... ;,={Ciy, -, 44, @psp, ") 11 £ g, < o}
be the cylinder consisting of those sequences in 1 with initial terms ( &, i3, « <+, 7).
We define a mass distribution # on I by u« (I, ... ) = Ccyi >+ cy)

Then since

oC
(cicccy )= 121 (c;,-.-°c,-‘c,-)’,

b)) = BuC T ).

1. Let us transfer
uto p on F by putting # (A) = g { (i, 4y, )3 X i-..€ A} for

Accordingly, u is a mass distribution on subsets of I with x ()

each subset A of F, where x; ;. ... = QIF ( £y, 45, +,4). Thus z (F) =1.

The mass distribution # satisfies 1° By assumption, let V. € R” be a nonempty
bounded open subset which satisfies the open set condition for { f;} ©=,. Since

Voo U fewm, A
converges to F. Here f* denote the k-times composition of f and the map f is defined

by f (A) = Ql £, (A). Inparticular, V O F and

_V( il,iz,' . ',Z.k) DF( l.x,l.g,“',llk)
for each finite sequence ( #,, 5, * * +, 7). Let B={ B, is any open ball | r is
radious of 0 < r < 1} We shall estimate g (B) by considering the sets V

( 4y, i3, * + +, i) with diameter comparable with that of B and with closure intersecting
F(\ B. We are define the random set
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Ko = U I - N U 7.

t=1 ge N

If K is nonempty with positive probability, K has Hausdorff dimension @, where a is

o0

the least 6 > 0. ie. E ( ,Zx T% < 1. Let A be m-dimensional Lebesgue measure and
define a function ¢ : [0, ] = [0, o] by

¢ (B =E ( Z} T% =E ( 21 T4.), where o N,
The sets J, satisfies 4°

,21 ACinf ( ¢,) < 21 AC infC 7))

< ACinf( J) < Jy Ty Ji++ +<cr, foralc> L

Let Q denote the finite set of all sequences obtained in this way. Then there is exactly
one value of k with ( 7;, iy, -+ +, i) Q. Since VQ1), - - -+, V{m) are disjoint,
{V( iy, 49, - -, d4¢) 1< I<m} are disjoint for each ( i}, i3, + -, ix)e Q and
so { V(i 4y, -, dpi)s (i),8g,-+,i)de Qand 1</<m }. Similarly,
F CLJ F( £y, ig, -, i)C LJ_V( {1, dg, 0 0 0, 10 Choose &, and d, so that
V contains a ball of radius 4, and is contained in a ball of radius d,. Then, for each
(41,49, ", i Q, the set V( iy, d5, * *, 14 contains a ball of radius

¢ ¢yt v+ ¢, d, and therefore a ball of radius ( inf ;¢ ;) d;r and is contained in a

ball of radius ¢, ¢ -+ ¢;, d; and hence in a ball of radius d; r. By @,

1 4

denote the set of those sequences ( #;, 5, + +, iy) in Q such that B intersects
V( iy, 45, +,1,). There are at most q = (1 + 2 d, )" d ;" (inf ;¢ ;) ~" sequences
in @, Then

;(B): TI(FHB) < /.l{( i],ig,‘ . '); x,-“,-z‘....CFﬂB}

< M { g I,’l','z....,"}.

Since, if x4.4.....€ F(B C LJT( iy, 82, * * *, i) then there is an integer k
such that ( 7y, 75, + + +, i) e @, Thus

uB) < %:y( I i )= %:( cir ey )< %: r*< r'q.
Since any set U is contained in a ball of radius |U, # (U)< |[U‘q. Therefore,

HE) = ¢ ' >0 by 2°% and dim ,F = s. Inductively, %( ci"r ¢y ) =1by

(3-1). If Q satisfying the condition of the Hausdorff metric, then Q contains at

most ( min, ¢, ) ™' » ' sequences. For each sequence ( iy, iz, * * +, i) €Q,
T TR P c,-,'--c,-,ITISrIT/'I

and so A is covered by (inf ; ¢, )™ »7° sets of diameter r | V| for each r < 1.

By largest number of disjoint balls of radius ¢é with center in F, dim gF <s, where s

is the Hausdorff dimension.
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4. Non-Integral Dimension of Irregular Sets

[ %,] Fractal Dimension

Definition 4.1. Let (X, d) be a complete metric space and let A C X be a nonempty

compact subset. For each ¢ > 0, let N(A, ¢) denote the smallest number of closed

balls of radius & > 0 needed to cover A. If D, = 1&%& exists, then
ln(—e)

D, is called the box counting dimension of A. And we will also say "A has

fractal dimension D ,”. The intuitive idea behind fractal dimension is that a set A has

fractal dimension D4 if N(A, & = ¢+ &~ Da for some positive constant c. From

this we obtain the following ([2], [12]) ;
DA - hm ].n(N(A,el?)_lnC .
0 ln(—e)

[ *,] Hausdorff Dimension

Definition 3.3. dimg4z F =inf { s H'F) }=sup{s: HF) = oo}

=0
Hw =($ & ¢ = dmal

0 if s dim 4 F°
For box counting dimension we know that
o f 0 < s < dimg(A)

liminf (oNCA, ) &' = { o 4 gmaa ¢ s < ©

The box counting dimension is also defined like this,

Proposition 34. Let AC R”" and let constants ¢ > 0 and @ > 0 are given. Then if
f:A > R” isa mapping for which [Ax)— Al < c lx—3° forall x,y = A

=5 5
Then for each' s, H°(f(A) < ¢ HA).
Proof. Let { U,) bea & -coverof A Then {f( A() U,) }is an & - cover of
f(A) since |RANUMN < c | U;]l® where e=c ¢&°  Then

S =
2, IRANUN “< ¢° 2( L US°
5 S

and so H(f(A) < ¢ HiF).

N &
Therefore, taking 6§—0, we have H(f(A)< c® H'(A).



IREBEEI ¥ 208 & 4288 19974 55 149

REFERENCES

{11 L.V. Ahlfors, Complex Analysis, McGraw-Hill New-York, (1979).
{21 MF. Barnsley, Fractal Everywhere, Academic Press, (1988).

(31 and S.G. Demcko, Iterated schemes and the global construction of fractals,
Proc. R. Soc A399 ( 1985), 243 - 275.
[4] , Chaotic Dynamics and Fractals, Academic Press New York, (1986).

[5] A. F. Beardon , On the Hausdorff dimension of general Cantor sets, Proc. Camb.
Phil. Soc. 61 ( 1965 ).

{6] M. V. Berry and Z. V. Lewis, On the Weierstrass-Mandelbrot fractal function, Proc.
R. Soc. A370 (1980).

{71 A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable
plane sets, (1928).

[8] , On fundamental geometric properties of plane line sets, J. London Math. Soc.
39  (1964) 441-448

[91 F.M. Dekking, Recurrent sets, Adv. Math. 44 (1982), 78-104.

[10] R.L. Devaney, An introduction to chaotic dynamical systems, Benjamin cummings
Publishing company, (1986).

(111 K.J. Falconer, The geometry of fractal sets, Cambridge Univ. Press Cambridge,
(1985).

[12] ,  The Hausdorff dimension of distance sets, Mathematika 32 (1985¢c)
206-212. ‘

[13] J. Feder, Fractals, Plenum Press New-York, (1988).

[141 A. Gerald, Edgar measure, topology and fractal geometry, Springer-Verlag

New-York.

{151 J. E. Hutchinson, Fractals and self similarity, Indiana Univ. J. Math. 30 (1981)
713-747.

[16] S. A. Kline, On curves of fractal dimensions, J. London Math. Soc. 20 (1945)
79-86.

(171 B. B. Mandelbrot, Self-affine fractal sets, In fractals in Physico L. Pietroner and
E. Tosatti, editors Elsevier Science Publ, (1986).

[18] Mauldin R. D. and Willilam S. C., Random recursive constructions: asyptotic
geometric and topological properties, Trans. Am. Math. Soc 295 (1986) 325-346.

[19] P. AP. Moran, Additive functions of intervals and Hausdorff measure, Proc. Camb.
Phil. Soc. 42 (1946) 15-23.

[20] C.A. Rogers, Hausdorff measures, Camb. Univ. Press, (1970).

[21] S.J. Taylor, The measure theory of random fractals, Math. Proc. Camb. Phil. Soc.
100 (1986) 383-406.

[22] Stringer, - Verlag, Fractals for the class room, Nation Council of teachers of
Mathematics Advisory Board. (1992).



