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Abstract

The mean residual life(MRL) function gives the expected remaining life of a
item at age t. In particular F is said to be an increasing initially then decreasing

MRL(IDMRL) distribution if there exists a turning point ¢ =0 such that
m(s)<m(t) for 0<s<K t*, m(s)=m(f) for t'<s<t. If the preceding inequality
is reversed, F is said to be a decreasing initially then increasing MRL(DIMRL)
distribution. Hawkins, et al.{1992) proposed test of H, : F is exponential versus
H, : F is IDMRL, and H, versus H, : F is DIMRL when tuming point is
unknown. Their test is based on a complete random sample X;,---, X, from F. In

this paper, we generalized Hawkins-Kochar-Loader test to random censored data.

1. Introduction

Reliability engineers and biostatisticians find it useful to categorize life
distributions according to different aging properties. These categories are useful
for modeling situations where items improve or deteriorate with age. Let F be a
continuous life distribution (i.e., F(£)=0 for #<0) with the finite first moment. The
mean residual life(MRL) function is defined as
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m(t)—E(X—tI x> t)— ——F(t) for each tZO,

where F(H=1— F({). Each F(¢) is uniquely determined by m(t), via the relation

m(O)exp{- fot[ m(u)] ‘1du}

F= )

, t=0.

Theoretical properties of the MRL function are given in Cox(1962), Kotz and
Shambhag(1980), Hall and Wellner(1981) and Bhattacharjee(1982). Applications of it
are surveyed in Guess and Proschan(1988), where it is seen that various families
of life distributions defined in terms of the MRL(e.g. increasing MRL, decreasing
MRL) have been used as models for lifetimes for which such prior information is
available. One such family of distributions is called as "an increasing initially then

decreasing MRL (IDMRL)” distribution if there exists a turning point #*>0 such
that

m(s)<m(d) for 0<s<t{t", mls)=m(d for t'<s<t (1.1)

The dual class of “decreasing initially, then increasing MRL (DIMRL)”
distribution is obtained by reversing inequalities on the MRL function in (1.1).
IDMRL distributions model life in which, in terms of residual life, aging initially is
beneficial but eventually is detrimental. Such life times are exemplified. (i) Human
lifetimes; High infant mortality causes the initially IMRL and deterioration with
advancing age causes the subsequently DMRL. (ii) Employment time with a given
company; The remaining employment time (residual life) of an employee with
several years with a company is likely (due to time investment, career value, etc.)
to exceed that of an employee with the company only several months. This
results in increasing MRL with vears of employment up to a certain point ¢,
after which, due to retirement, MRL decreases. Also see Guess and Proschan(1988)
and the references therein for further applications of the IDMRL family.

If Fis an exponential distribution (ie., F(¢#)=exp(—At) for >0, A>0), then
F is life distribution. F is an exponential distribution if and only if m(t) is
constant for all #=(. Due to this "no-aging” property, it 1s of practical interest to
know whether a given life distribution F is constant MRL or IDMRIL. Therefore,
we consider the problem of testing
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H, ' F is constant MRL,

versus
H, : F is IDMRL (and not constant MRL),

based on a random censored data X, ---, X, from F (unknown). When the dual
model is proposed, we test H; versus

H," : F is DIMRL (and not constant MRL).

In practice, censoring arises in engineering applications and in medical

applications with animal studies or clinical trials. For examples, some components
on test will still be functioning when the test ends or some patients will have
dropped out of the study (by moving to another city, by refusing to continue the
treatment, and so on) and other will still be alive at data analysis time.
For complete sample case, this problem was noted by Guess, et al.(GHP, 1986),
who obtained tests assuming either (a) ¢* is known, or (b) p= F(f') is known.
In practice, however, such informations are usually lacking, as was noted by
GHP(1986). Hence Hawkins, et al.(HKL, 1992) proposed test which do not require
these assumptions. Both of GHP(1986) and HKIL(1992) tests are based an
estimates of functional which distinguish that F is constant MRL against that F
is IDMRL.

In the random censoring model, instead of observing a complete sample

X, -+, X, from the life distribution F, we are able to observe only the pairs

(Z;,68), i=1,--, n where

1 if X<Y; (the ith observation is uncensored)
Z;=min{X,, Y.}, 8;=
0 if X,> Y, (the ith observation is censored).

We assume that the censoring random variable Y7,:--, Y, are independent and
identically distributed(iid) according to the continuous distribution G and that the
X's and Y's are mutually independent. Therefore, Z,,:-*,Z, are iid according to
the distribution L, where 1—L=L=FG=(1—F)X{1- 6.

In the type I censoring model, Z;= min{X;,, ¢.}, where t, is some (preassigned)
fixed number which we call the fixed censoring time. In this paper we will
consider random censoring model only. Note that this includes type I censoring
by simply setting Y;=1¢..

In the random censored data, we can estimate the survival function using
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Kaplan-Meier’s product limit(PL) estimator or Susarla-Van Ryzin(SV) estimator.
Kim and Na(1993) considered the test using PL estimator.

In section 2, we generalize the HKL(1992) test using SV estimator to the
random censored data, when the changing point is unknown. The SV estimator

F:, of F, introduced by Susarla and Van Ryzin (1978), is;

KZ >t . K35=0,ZpSt)

_ i _ ;2; n—i+2 o

1-F()= F.(1) n (zgm( n—i+1)

where Z (), ", Z (» are ordered observations and & () is the censoring status
corresponding to Z(;, ¢=1,-,n. In section 3, Monte Carlo simulations are

conducted to compare the power of the our generalized test using SV estimator
with that of test using PL estimator for various values of sample size n, a and
y when the MRL futction is m, z,(¢)= B+ yexp(— at)(1 —exp(— at)).

2. THE IDMRL TEST PROCEDURE

lIn this section, we review the IDMRL test procedure in details and propose
IDMRL test statistic. IDMRL test procedure is testing Hy : F is constant MRL
versus H; : F is IDMRL (not constant MRL). We do not assume knowledge of

the proportion p of the population that dies at or before the turning point.
HKL(1992) suggested the functional ¢(F) via the

¢(F)=sup{¢,(F):t=0},

where ¢(F)= [ [m(/(9)— FOVR(9ds— [ [m(A9) = FOIF()dsand £(5)=

F’(s). The functional ¢(F) has properties such that

(1) If F is an exponential distribution, then @(F)=0.

(2) If F is IDMRL distribution, then ¢,(F) is strictly increasing (decreasing)
for t{t'(Ht") and ¢(F)=¢ (F)>0, and distinguishes that F is constant MRL

against that F' is IDMRL.
Using integration by parts, we can rewrite ¢,(F) as
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wp = [[F -2 Pt [T+ Fo+e Pl
(2.1

= ["AF()ar

where p=F(¢) and

1—s5—2(1-59)%, for 0<s<p
A(s)=
(—1420(1—9+2(1—9)?%,  for p<s<l.

HKI.(1992) formed their statistic by replacing F by the empirical distribution
function in (2.1). In our random censored model, we replace F by SV estimator

F:, in (2.1). In order to obtain test statistic, we need the following theorem.

THEOREM 2.1 Let ¢ F.)= [ AGF()ds and ¢(F)= [ A(F(9)ds.
Suppose following conditions (2.2) and (2.3) hold,

-1

fOF PG R (1) o0 (2.2)
fow[ F ) fo (70 ~'aF) VdK o, (2.3)
Then
Valg( B,)—¢,(F)] N0, (F,G)) as n—oo
where

AF.Q)= [ [TaFNA ENFOF) [T 1 F Gl " dFdsay. 2
Proof

VL6 F)— 9(P1=Vn [ ACF,()— ACF()lat
=\/71fII[A(ﬁ(t)) —A(F(t))]dt-k\/;zflz[A( F,(9)— A(F(9)]dt

_ meA'(F( NALDdt+ R 1p+ Ry,
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where

Ry,= fI[A' (b, F,(0+(1— b, (DF(8)}— A (F())]A(Ddt,

R, = fL[A’ {b,(D F,()+(1—=b,(NF(t)}— A (F()]A (DL,

A=V F,(D—F),[,=[0,F (], L=(F '(p),) and 0<b, (D=1
for t=0. Note that b, exists by the mean value theorem. We will show that

R,, and R,, converge in probability to 0 as #n-—>o0,
| Ryl <sup, | ATb(D By (D+ (1= b, (DF(O] = A(F() | [ 14,00 | a.

Susarla and Van Ryzin (1978) show that F (D converges almost sure(a.s.) to

F() for all 0<&L=min{F Y(1),G '(1)}=F '(1) under condition (2.2).
Since F is continuous, it follows by a standard argument(pp. 132-134 in Chung,

1974) that F,()—F(® uniformly in t a.s.. Since A’ is bounded and continuous

at tell,

sup, | A'[6,()) F,(D+(1—b,()F()]—A(F(H) | >0 as..

We also use the fact that Susarla and Van Ryzin(1978) show that
{A,(9),0<t<T} converges weakly to {A(#),0<¢t<T} if F(I)<1, where

{A(D,0< t<F Y1)} is a Gaussian process with mean zero and covariance
— — min {x,y} __.,__ o
Cov (A(x), A(») = FF() | ( F'G) "'dF. Next note that [ A(fat

is proper random variable since

EL[ 140 tai= [T EIAG T dr< [ TE@ (0] P
(M F R Sl U2 oo
= [T F 0 [ FO) "'aF) Max

under condition (2.3). By the continuous mapping theorem (see, p. 30 in Billingsly,
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1968),]0 |A,,(t)|dt-—$f0 | AC#) | d¢ and hencefo | A ()| df is bounded

in probability. Thus R, converges in probability to 0 as x#-—>o. A similar
argument holds for R,,. Therefore, by the continuous mapping theorem and

Slusky's theorem, we get
Al T( By ()= TR =S [TA(F(0) AD)dt as n—co.

By the theory of stochastic integration (see chapter 5 in Cramer and Leadbetter,
1967), we can obtain that the limiting random variable is normal with mean zero
and variance given by (2.4). D

Corollary 2.2 If F is an exponential distribution with mean &, then

Va(T( F,))—% N0, 62 6(F, G)) as n— oo,
where
6i(F,G) = folg(z){Z(— fln(z))} "'dz with g(2) =,A_2%_——_z)‘. (2.5)

Result holds by straightforward calculation from (2.4).

Since the null asymptotic variance Hzoﬁ(F ,G) depends on the nuisance
parameter & and G, we need consistent estimator of § and o%(F " (G) in order to

make our scale-invariant test. Under the assumption that the mean fo F(x)dx is

finite and suitable regularity on the amount of censoring, 6,= fo F(x)dx is a

consistent estimator of . Also we can obtain a consistent estimator of ozo(F .G,

~ 1 — _ —_—
002= fo g(2{ L,(—8,In(2)} ~'dz, by replacing L with L,, the empirical

survival function of Z;,'-,Z,, and 8 with 8, in (2.5).

Now, we propose the following scale invariant test statistic using random
censored data’
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\/7’lmaX {1<ksn) ¢’k( Fn)

6n00

¢"( F,)=

The IDMRL test procedure rejects the null hypothesis of exponentiality in favor of
the alternative H; @ F is IDMRL (not constant MRL) at the approximate
significant level a if ¢*( F,)= z,.

Analogously, the approximate significant level @ test of Hy versus H,” : F is

DIMRL (not constant MRL) reject Hp if ¢*( F,) < ~2z,.

3. POWER COMPARISON

In order to compare the power of the generalized HKL test using SV estimator
with that using PL estimator, a Monte Carlo simulation is performed. For Monte
Carlo study we used the subroutine IMSL of the package FORTRAN on IBM SP2
super computer at Seoul National University. The random numbers are generated
from

__ 2 2
Fa,ﬂ-f(x)z{_—ﬂ—[ﬁy exp(-ax)(l—-exp(—ax))}{ [exlpl(:x;ﬂer]g_ 2

} 1/2a8

_exp(an) +d—c 1+d+c) """
| op@tdre Ttd ) - 30

where d=7/28, ¢*=[4(8/7)+ 11/14(8/»*].
This distribution has MRL function m 4 g ,(x) = 8+ yexp(— ex)(1—exp(— ax)),

x> 0. The motivation(see HKL, 1992) for choosing F,, is that Fg 4, has
1

IDMRL structure with turning point t'z-(; In2 for any choice of (a,B,7) and

F .z, is exponential distribution if y=0. The censoring random numbers are

generated from G g g,:(0)=[ F 44,(2)]" for/1=% and %‘ here A is viewed

as a censoring parameter since the probability that an observation will be
A

censored is Pr(8,=0)= FERE
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<Table 1> Monte Carlo power comparison from 1000 replications with ¢=land f=1

A=1/9 10% censoring

A=1/4 20%

censoring

Y

1

2

3

1

2

3

sample size

I

PL SV

PL SV

PL SV

PL SV

PL SV

PL SV

10

0.10
0.05
0.01

0.876 0.878
0.756 0.762
0.358 0.365

0.908 0915
0.789 0.811
0.497 0.504

0.918 0.926
0.846 0.853
0.601 0.617

0.847 0.850
0.701 0.709
0.355 0.373

0.876 0.875
0.765 0.767
0.449 0.468

0.897 0.901
0.793 0.813
0.522 0.547

20

0.10
0.05
0.01

0.881 0.887
0.761 0.761
0.444 0.445

0.944 0.948
0.884 0.884
0.693 0.696

0.990 0.990
0.973 0.977
0.874 0.878

0.855 0.856
0.702 0.711
0.369 0.377

0.947 0.944
0.874 0.888
0.645 0.656

0.985 0.984
0.951 0.955
0.790 0.808

30

0.10
0.05
0.01

0.900 0.903
0.799 0.795
0.493 0.495

0.984 0.983
0.957 0.960
0.846 0.846

0.997 0.997
0.993 0.993
0.963 0.967

0.865 0.863
0.748 0.753
0.447 0.452

0.978 0.975
0.939 0.938
0.761 0.782

0.997 0.995
0.989 0.989
0.927 0.937

40

0.10
0.05
0.01

0.927 0.930
0.849 0.851
0.576 0.572

0.990 0.989
0.983 0.983
0.900 0.901

0.998 0.999
0.998 0.998
0.989 0.990

0.903 0.907
0.814 0.806
0.501 0.511

0.990 0.990
0.974 0.975
0.882 0.894

0.999 0.999
0.999 0.999
0.979 0.983

0.10
0.05
0.01

0.947 0.948
0.880 0.884
0.651 0.650

0.998 0.997
0.993 0.992
0.955 0.954

0.998 0.999
0.998 0.998
0.998 0.998

0.937 0.932
0.868 0.853
0.585 0.589

0.994 0.994
0.986 0.986
0.913 0.927

0.999 0.999
0.998 0.999
0.989 0.996

75

0.10
0.05
0.01

0.970 0.972
0.935 0.930
0.772 0.765

0.999 0.999
0.998 0.998
0.989 0.990

0.999 0.999
0.999 0.999
0.999 0.999

0.963 0.957
0.917 0.914
0.724 0.722

0.999 0.999
0.999 0.999
0.983 0.993

0.999 0.999
0.999 0.999
0.996 0.999

100

0.10
0.05
0.01

0.987 0.986
0.962 0.959
0.879 0.867

0.999 0.999
0.998 0.998
0.988 0.988

0.999 0.999
0.999 0.999
0.999 0.999

0.975 0976
0.954 0.953
0.851 0.835

0.999 0.999
0.999 0.999
0.993 0.996

0.999 0.999
0.999 0.999
0.999 0.999

<Tables 1>

replications of

and 2 contain Monte Carlo estimated powers based on 1000
sample size n=10, 20, 30, 40, 50, 75 and 100 from

F,z, and

—éa_ 5,4 for B=1 and a selection of ( @, 7,4). Looking at tables, first note that

the test using SV estimator generally dominates the test using PL estimator.

Second feature of tables is that for fixed a, the power of all the tests increase

rapidly as y increases. This is generally to be expected since the width of m(x)
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increases as v increases. Another feature of tables is that for fixed 7y, the power

of tests increases as a increases (i.e., the turning point f  decreases).

From the simulation results, we may conclude that speed of convergence to
normality of the generalized HKL test using SV estimator is faster than that of
the generalized HKL test using PL estimator.

<Table 2> Monte Carlo power comparison from 1000 replications with =2 and 8=1

A=1/9

10%

ensoring

A=1/4 20%

nsoring

Y

2

2

3

sample size

PL SV

PLL 5V

PL SV

PL SV

PL SV

PL SV

10

0.10
0.05
0.01

0.927 0.930
0.840 0.844
0.563 0.569

0.975 0.978
0.940 0.946
0.751 0.767

0.981 0985
0.960 0.962
0.871 0.881

0.924 0.929
0.825 0.831
0.528 0.540

0.958 0.962
0.909 0912
0.708 0.706

0.981 0.979
0.939 0943
0.821 0.840

20

0.10
0.05
0.01

0.963 0.963
0.908 0.914
0.650 0.656

0.997 0.997
0.991 0.9%0
0.942 0.944

0.999 0.999
0.999 0.999
0.991 0.991

0.957 0.956
0.891 0.896
0.627 0.638

0.995 0.994
0.982 0.985
0.903 0.913

0.998 0.997
0.995 0.997
0.984 0.988

30

0.10
0.05
0.01

0.979 0.980
0.938 0.938
0.709 0.722

0.999 0.999
0.998 0.998
0.981 0.984

0.999 0.999
0.999 0.999
0.998 0.998

0.976 0.975
0.920 0.932
0.702 0.711

0.997 0.998
0.997 0.998
0.971 0.979

0.999 0.999
0.999 0.999
0.995 0.997

40

0.10
0.05
0.01

0.981 0.986
0.960 0.965
0.832 0.838

0.999 0.999
0.999 0.999
0.994 0.994

0.999 0.999
0.999 0.999
0.999 0.999

0.976 0.980
0.946 0.947
0.779 0.792

0.999 0.999
0.998 0.999
0.991 0.994

0.999 0.999
0.999 0.999
0.999 0.999

0.10
0.05
0.01

0.989 0.983
0.967 0.968
0.869 0.869

0.999 0.999
0.999 0.999
0.999 0.999

0.999 0.999
0.999 0.999
0.999 0.999

0.988 0.983
0.962 0.968
0.836 0.848

0.998 0.999
0.998 0.999
0.996 0.997

0.999 0.999
0.999 0.999
0.999 0.999

(5]

0.10
0.05
0.01

0.995 0.995
0.991 0.994
0.957 0.958

0.999 0.999
0.999 0.999
0.999 0.999

0.999 0.999
0.999 0.999

0.999 0.999 |

0.994 0.997
0.990 0.993
0.936 0.942

0.999 0.999
0.999 0.999
0.999 0.999

0.999 0.999
0.999 0.999
0.999 0.999

100

0.10
0.05
0.01

0.999 0.999
0.996 0.996
0.983 0.987

0.999 0.999
0.999 0.999
0.999 0.999

0.999 0.999
0.999 0.999
0.999 0.999

0.999 0.999
0.995 0.997
0.970 0.972

0.999 0.999
0.999 0.999
0.999 0.999

0.999 0.999
0.999 0.999
0.999 0.999
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