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Abstract

The smoothing parameter or bandwidth is crucial to performance of the kernel
based regression estimator. So the choice of a “optimal” smoothing parameter
produce a single curve estimate. If a single estimate is replaced by a family of
estimates, it become easy that we understand what varies with choice of the
smoothing parameter. This paper suggests the threshold of the maximum
bandwidth and the number of the family members in the regression context.

1. Introduction

A regression function describes a general relationship between an explanatory
variable and a response variable. To estimate the regression function nonparame-
trically, kernel-based smoothers are often used hecause of their simplicity and
implementation. There are a great deal of theoretical research on kernel-based
smoothers. See, for example, the books of Silverman(1986), Eubank(1988), Miiller
(198%), Hardle(1990), Scott(1992), Wand and Jones(1995) and Fan and Gijbels(1996).

Suppose that we have observations (X, Y,); i=1, -, n from a population
having a density f(x, y). Let fy(x) be the marginal density of X. Denote the

regression function by m(x)= E(Y[X=x) and the constant variance by
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7= var(Y|X=x). Here, m(x) is assumed to be a smooth but unknown

function. This relationship 1s expressed as follows
Y= m(X,) + &, =1, n (N

where ¢,'s are independent random variables with the expectation (0 and the
variance o Among the kernel-based methods for estimating m(x), the local
linear regression estimator(Stone, 1977, Cleveland, 1979, Miller, 1987, Fan, 1992, Fan
and Gijbel, 1996) is often used because it shows good performance, It is based on

moving locally weighted averaging and can be expressed as follows

S

ﬁLz,(x;h)=n“lgw(X,-,x;h)Yl- ¢

{sp(aih) — 5, ()X, —x)) Ky(X,—x)
so (k) s (i) — s (x5h)?

s, (x;h)y=n" g (X;,—x) " K,(X,—x), r= 0.1, 2. The smoothing parameter

where w(X;, x;h) = and

or bandwidth, %, is crucial to the performance of the local linear regression
estimators(Sivermann,1986). A choice of the smoothing parameter gives a single
regression estimate. Therefore the goal of smoothing should be a single regression
estimate. This idea comes naturally from parametric statistics, where all important
information 1s summarized in a few parameters.

If a single regression estimate 1s replaced by a family of estimates, indexed by
the smoothing parameter, smoothing becomes a more powerful graphical device.
This reveals structure in the data more quickly and easily than is possible from
any single estimate, because more information is summarized in a plot, as shown
in <Figure 1>. And it easily adapts to situations where there is useful information
in the data at several different level of the smoothing parameter.

<Figure 1> shows the local linear regression estimates using the Gaussian
kernel, for the so-called motorcyele data set shown in Hiardle(1990). The raw data
{(X;, YD} |, n=133, are shown as dots. Units are g (earth-acceleration) for

Y and wms (milliseconds after impact in a simulated experiment) for X . Figure
la shows a local linear estmate. The bandwidth used here, is Apgy proposed by
Ruppert, Sheather and Wand(1995) that provides a good compromise for “best”
choice of global bandwidth for these data. Figure 1b shows a family of estimates
centered at the estimate in Figure la.
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< Figure 1 > Kernel regression estimates for Motorcycle data, overlaid with scatterplot
of the raw data. Figure 1a shows a single estimate using Ruppert,
Sheather and Wand bandwidth. Figure 1b shows a.family of 15
estimates centered at the estimate in Figure 1a.

In this paper, we suggest the threshold in the choice of the maximum
bandwidth of the familv. In section 2, we describes the family approach of the
nonparametric curve estimation. In section 3, we carry out the simulation studyv to

determine the threshold of the maximum bandwidth of the family.

2. The Family Approach

In this section we consider the family approach of the nonparametric curve
estimation. Minnotte and Scott(1993) and Marron and Chung(1997) introduced the
family approach for the density estimation. Marron and Chung(1997) discussed also
the regression estimation. The important points in the family approach are to
determine the number of estimates in a family and the range of the bandwidths.
We outline here the result of Marron and Chung(1997).

They recommended the family of the local linear regression estimates that used
Ruppert, Sheather and Wand “Direct Plug in” bandwidth, /Zpew. as a central
estimate, because il often gives an effective choice of global smoothing parameter.
Figure la is the estimate using JApey = 1.589. They suggested using 15 estimates

that made it easy to visually connect the estimates. We also use 15 members in
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Figure 1b.
To determine the range of the bandwidths, we should first choose an extreme

value of the bandwidth. Let %;,(X) be the local linear estimates using the
smoothing parameter, /£, and m..(x) be the limit of the smooth my,(x) as
h — . Then m.(x) is the least squares fit line. As the maximum bandwidth

of the family, %y, Marron and Chung(1997) suggested

h’ max lnf{h> hRSH': | %/[(X*)- 7;%0 (-’C*)I < Cll ;}\1/1,\.\”(3‘*)” 7;;th»(x*)|} (3)

hma.\' = max[ h) max » CQhRSW] (4)
where x* was a location that maximized | m By () — me ()], i. e.
| 924, (7)) = me (X = max | my,, () = me(2)].

Using this #4., the minimum bandwidth of the family could define in the same

manner of the density estimation as follows

hmin - hRSW/ (hmax /hk‘SW) = h%(SHl’/hmax . (5)
The bandwidths of the family is spaced as follows
{hmin(hmax/hmin) tmhi A 1. Tt 15 } (6)

Since the bandwidth is considered as scale parameter, the logarithmic scale in (6)
1s better than the linear scale. For example, see <Figure 3> of Marron and Chung
(1997).

In (3) and (4), ¢y and ¢y are personal choices. Marron and Chung(1997) recom
mended 0.3 and 3; respectively. Note that Figure la is used about 5hpey as
e - In the density estimation, they suggested using 06 and 3 as ¢; and ¢,
respectively, after consideration of a number of examples. The idea of the density
estimation were simply adapted to the regression estimation. While the density
estimation is considered as one sided context, the regression estimation is two
sided problem. So, the threshold of 0.6 1s naturallv replaced by 0.3. But in case of
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the random design, the above method often gives the large value of kg, and
causes M, to have the very small value. The small value of 7k, shows the
bad performance of the estimate, as shown <Figure 2>. Figure 2a is the family of
estimates Using Ay = 2Apsw and Figure 2h is that using Ag. = 9%psw under
the uniform random designs. Figure 2a shows that there is a little difference
among the family members. This indicates £ = 2hpey is relative small. On the
other hand, Figure 2b shows that the estimate indexed by Ay, 18 very noisy.
This indicates #ga = Qhpsw is too large so that the upper bound of %, in (4)

is needed

Figure 2a Figure 2b

0 0.5 1

< Figure 2 > families of kernel regression estimates for 100 simulated data points from
the true regression function m(x) =2 sin*(2 zx"). Figure 2a is the family
using  Age = 2husy. Figure 2b is that using A = ks,  Apsy =
0.03466. The dotted line is the true regression function.

3. Simulation Study

In this section, we carry out Monte Carlo simulation to determine the threshold

of ¢, in (4). We consider three testing regression functions as follows

(ml) m(x)=2exp{ —(x—0.2)2/0.4°} + 3exp { — (x—0.8)*/0.05"}.
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(m2) wm(x)=2sin(dmx).

1 if xe (0,0.25)
(m3) m(x)=1{cos(4x(x—1/4)) if x= (0.25,0.75).
! if xe (0.75,1)

And we take the uniform random design and the equally spaced fixed design. The
sample size is taken as = 100 and 500 replications are performed. We take
€, ~ N(0, ¢) independent of X with 6=0.5 from randn function of MATLAB.
We use the Gaussian kernel as the kernel function and the direct plug-in
bandwidth selector, Zgpsw, of Ruppert, Sheather and Wand(1995) as the bandwidth.
To reduce computational effort, we use the binning approach suggested by Fan
and Marron(1994). This is useful because the data onlv need to be binned once.
So binned computation has the advantage of requiring only O(N) kernel
evaluation, this allows very fast computation of m(x;h) over the grid points.
Here N denotes the number of grid points. We use N = 401 recommended by
Fan and Marron(1994). As the method for obtaining grid counts that has good
properties, we use “linear binning”(Hall and Wand, 1993).

<Table 1> shows the median, 25th percentile(Ql) and 75th percentile(Q3) of
ratio = &' pu/hrsw and the numbers of ratios exceeding 7.0 in 500 replications.
And <Figure 3> i1s box plot of ratios under three models. <Table 1> and <Figure
3> show that ratios under the fixed design is smaller and more stable than those
under the random design. The numbers of ratios exceeding 7.0 under the random
design are more than those under the fixed design. In case that ratio is large
value, family approach gives bad appearance. This is because too small value of
the smoothing parameter make the denominator of the weight function in (2) have
negligible value. So this suggest that it is better the upper bound of A, is
limited. After consideration of a number of examples, we suggest using 7.0 as the
upper bound of ratio as follows

/3 max inf{h>hRSW: | 7/}’\1;1(?(*)_ 7/’;106 (x*)l SOB' ;ﬁhkw(x*)— ’;;loo (x*)l}

hmax = mln{ 7 hRSWs max[ h’ max , 3h]\’SW] }
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< Table 1 > three quartiles and the numbers of ratios exceeding 7
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< Figure 3 > Box plot of the ratios. R1, R2 and R3 are the ratios under the random
design of the model m1 m2 and m3, respectively. F1, F2 and F3 are
the ratios under the fixed design of the model mi m2 and m3,
respectively.

Marron and Chung(1997) used 15 estimates in a familyv. 15 estimates in a family
1s adequate in the density context. But in regression context, it seems that 15
members are too many o visually distinguish the estimates. <Figure 4> shows
the families of the estimates using 11 and 15 members for Canadian Earning
Power Data, overlaid with scatterplot of the raw data. We suggest using 11
members after consideration ol a number of examples like as <Figure 4>. Then

the bandwidths of the family is spaced as follows
{hmm(hmax/hmin) (e o = ]., T, 11 }v

where A, 1s same as in (D),
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Figure 4a Figure 4b
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< Figure 4 > Kemel regression estimates for Canadian Earning Power Data, overlaid
with scatterplot of the raw data. Family members are 11 for Figure 4a
and 15 for Figure 4b.

4. Discussions

In section 3, we suggest the upper and lower bound of bandwiths, and the
number of family members. When we restrict the bound of the bandwidths, each
member of the family is smooth enough to visually connect adjacent members,
So, the family approach becomes the powerful graphic tool. In the density
estimation, there are a large of data in high density area so that the family
approach could catch the finer peak of true density function. But in regression
context, the family approach does not work as the density context because the
region having the finer peak of true regression function does not accord the region
of high density in X-space. But the family approach could have the same effect

as the good location adaptive smoothing.
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