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Abstract

In this paper, we consider a hierarchical Bayes estimation of the parameter, the
reliability and failure rate functions based on type-Il censored samples from a
Burr type-XII failure time model. The Gibbs sampler approach brings considerable
conceptual and computational simplicity te the calculation of the posterior
marginals and reliability. A numerical study is provided.

1. Introduction

The two parameter Burr type-XII distribution which simply written Burr(c, k) is
one of the general parametric families that covers a large portion of the curve
shape charactenstics of types I, IV, VI in the Pearson family and many other
transitional ones such as type III. Burr(1942) classified and explored twelve types
of distributions. Dubey (1972, 1973) discussed the usefulness and the properties of
the Burr(c, k) distribution as a lifetime model. Papadopoulos(1978) developed a
Bayes estimator of k and reliability for the Burr(c, k) by using the gamma
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conjugate prior based on a complete sample. Lewis(1981) noted that the Weibull
and exponential distributions are special miting cases of the parameter values of
the Burr(c, k) distribution. She proposed the use of the Burr(c, k) distribution as a
model in  accelerated life test data representing times to breakdown of an
insulating fluid. Evans and Ragah(1983) obtained Baves estimators of the two
parameters and rcliability ol the Burr(c, k) by assuming discrete values on a finite
set of points of the prior. AL -Hussaint and Jaheen(1992) developed approximate
Baves estimators of the two parameters, reliability and failure rate functions of the
Burr(c, k) failure model by using the method of Lindley based on type-II censored
samples. AlL-Hussami and Jaheen(1994) developed Bayes estimators of the two
parameters, reliability and failure rate functions of the Burr(c, k) failure model by
using the approximation method of Tiernev and Kadane based on type-1II censored
samples.

Using Gibbs sampler approach, Dev and Lee(1992) considered Bayesian computation
for the parameters and the reliability function of Z-parameter exponential distribu
tion and considered DBavesian computation in constrained parameter and truncated
data problem in multivariate life distributions. Tiwarl, Yang and Zalkikar(1996)
considered Bavesian estimation of the parameters and the reliability function based
on tyvpe-Il censored samples from a Parcto failure model.

In this paper, hierachical Baves approach is considered for estimating the
parameter, reliability and failure rate functions of Burr(e, k) distribution under
type-II censoring. In Section 2, we give the model and desceribe the computation
methods for Baves estimation. In Section 3, we implement the Burr(c, k) failure
mode]l with an illustration from the simulated data.

2. Model Development and Gibbs Sampler

In problems such life-testing, when # items are to be tested, the ordered
ohservations are a common occurrence. In that case, time and cost can he saved
by stopping the experiment after the #(<#n) ordered observations have occurred,
rather than waiting for all = failures.

We assume that the Burr(c, k) model represent the lifetimes of all item. The
Burr(c. k) distribution has a probability density function(pdf) of the form

Axl o kY= ckx" "(1+x) "V 00, >0, k0. (2.1)



o F - AEH Burr 852 o) A Mol stdEe] wolxek 2% 73

A random sample of # items is drawn from the Burr(c, k) failure model and is
put on life test. The observed sample consists of, for a preassigned #, the
ordered failure times, x,{xy<{:*-<{x, and (#—7) survivors. We assume that the

parameter ¢ is known. Then the likelihood function and reliability of the censored
sample are given, respectively, by

c—1

Aaled = o ok T exp (£ D), 22)
R(H=(1+t) ", (2.3)

where x=(x,,"",x,) and T=Zln(l+x§')+(n*r)ln(H—xiﬁ). The hazard

rate is given by

kot !

h(t)=m.

(2.4)

In our hierarchical Bayesian model, at the first stage, the prior distribution on 4
is gamma distribution with parameters @;+1 and B,, where @, is known. The

gamma density 1S given by

f(k | al’Bl):

0o
9
<

]. a) k
IT R -, ¢;+ 10, >0. (
(e, + 1B, 1 exp( B8 ), a; B

We denote the above distribution of (k] @y, ) as Gamma(a,+1, 8,). At the
second stage, the distribution on hyperparameter J, is inverted gamma with
parameter a@; and B and both parameters are known. The inverted gamma
density 1s given by

a;

FBy | an, B) = - exp(—%’—x 0,50, 8,50, 26)

F( az)uﬁla

We denote the above distribution as (8 | @s, ) ~ IG(ay, ;). Then the joint

posterior density of £ and S is
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Mk, Bl x) o« flxl Rf(kT BB

o expl — k(7+?“ — i,) ]B(m’l“ kM, (2.7
|

From (2.7), the full conditional posterior pdfs are

Fk | By, x) o exp[—k(ﬂﬁ%)]k’*“’,

that is. (%] 8.2 ~ Gammalr+a,+1.(T+=)"1], (2.8)

1

and
(B |k x) o< exp[-?(/ﬁﬁ)] (,I,[,w,

that is, (8, | & x) ~ IG[a]+a2+1,/e+Bg]. (2.9)

Thus the conditional posterior pdf of & and /A, are gamma pdf and inverted
gamma pdf, respectively.
The Guabbs sampler is an iterative Monte Carlo integration method, developed
formally by Geman and Geman(1984) in the context of image restoration. In
statistical framework Tanner and Wong(1987) used essentially this algorithm in
their substitution sampling approach. Gelfand and Smith(1990) developed the Gibbs
sampler for fairlv general parametric settings.
Now, we introduce the Gibbs sampler approach briefly.

1. We have a collection of p rv.'s Uy, -, U, whose full conditional distributions,
denoted generically by AU, | U,, ¥#+s),s=1,+,p are available for sampling.

2. Under mild conditions(Gelfand and Smuth(1990)), these full conditional distributions

uniquely determine the full joint distribution  f{( Ul,--',U,,) and hence all the
marginal distributions f(U),s=1, -, p.
The Gibbs sampler generates from the conditional distributions as follows.

.. . . . W) (
1. Given an arbitrary starting set of values U, -, U, O , draw

O trom AU T O e UD),
O rom AU T O, U UM,

Up“) from f(U, | U,m,“'.U,)(l)l)
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to complete one iteration of the scheme.
2. After { such iterations we arrive at a joint sample (U, -, U,)m) from

f(Uy, -, U,). Geman and Geman(1934) showed under mild conditions that

(U, Uy S (U, U) ~ FU,, -, U,) as t— oo,

Hence for sufficiently large ¢, Uf” can be regarded as a sample from f(U,).

3. Parallel replications m times vields m iid p -tuples:
(U, U, j=1,m,
For any function T of U),--, U, whose expectation exists,

LS T - U = ELT(UL -, Up)) as mo— o,

almost surely. The distribution of (Uy,-+,U,) can be approximated by the
empirical distribution of (Ul(,-”,“-,U,fj”), 7=1,-, m. Similarly the marginal of
U, can be approximated by the empirical distribution of U,,;-”, =1, m.
When a lower dimensional marginal is required, for example f(U,), and if

(U, | U,, ¥#s) can be computed, the estimate of pdf is
HU) =L BAU U ).
For any T(Uy,--, U,), let
T0=TUY -, U, j=1,-,m,

the empirical distribution of Tlm,'--, T,fl” provides an estimate of f/(T(U,, -,
U,)).
3. Numerical Example

In this section, an illustrative example is presented by simulated data. In our
simulation data, we take #n=30, »=15, ¢=5.0, £=4.2542, a,=6.0, B, =
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0.5846, @,=3.0 and £.=0.25 and generate the observations x; from the

Burr(c, k) failure model with ¢ and k. For hierarchical Bavesian analysis, using

(iibbs sampler, we need the marginal posterior densities which are as follows:

(kIBl,zc)~Gamma[r+al+1,(T+§lw)”], (3.1)
1
(B, | kyx)~IGLa, + a.+ 1, k+ Bo]. (3.2)

We place vague second-stage prior on £, letting @»=1.0x10"" and B =
1.0<10 °. In Gibbs sampler, use 100 iterations and then = 1000 replications for
50% censoring observations. Based on m= 1000 replications, £=4.5283. The Figures
1, 2 and 3 are graphs of f(k1]S). Flu(t) | S), at mission time
t=0.6. From the Gibbs sampler, (R\'”, -, R\"} is a sample from f(R(® | S)
and {hl(l),-", MY s a sample from f(R(E) 1 S). The 90% confidence intervals
are (R (g5, R ({osnn) and (B (g s B (g, (0.05m) and  (0.95m) are 0.05m"

th L : . . . T .
and 0.95m"™ the order statistics, respectively. For various time ¢, Tables 1 and 2
give the true values, the posterior means, the residuals and 90% confidence
intervals for R(#) and Ah(#) on the same censored data.

< Table 1 > Posterior Mean and 90% Confidence Interval of R(t)

R T T
[ R(1) T R(f) 1 R(f)—- R(t) ‘) )0 Confidence Interval _j

0.8773 08705 | 00068 [ 08208, 0.9140 ) |

0.7272 070012 06185, 0.8035 ) ]

0.5164 C0oto ) |

3o 02095 | 02910 COO0RT | O3, 043700
_OA389 | od30 oot ] (00608, 02578 )
L0 00524 ] 00571 00047 | (007, 003200 |

< Table 2 > Posterior Mean and 90% Confidence Interval of A(#)

L t h( t) [ h(f) I /l( f) — lz(f) ()"<> (()ntlclcn(o Interval 1‘
5 ] 1osor ]I U008 [ o8R 19443)
‘ T ()_L) J@_a% (L7563, 38577 )
D07 | A7 | AEM0 | 02817 30022, G nig
08 6622 *!V”Qw 50 j N 7(7 mx L CABR039, 9.89 /1 ) |
09 [ 87M5 | umy | 08651 7)
% 1.0 106354 | 113206 | (mm)
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< Figure 1> Estimated pdf : (k| S)
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< Figure 2 > Estimated pdf : F(R(t)|S)
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< Figure 3 > Estimated pdf : F(k(t)]S)
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