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ABSTRACT

Stability issues of linear Takagi-Sugeno fuzzy models are thoroughly investigated. At first, a systematic way of

searching for a common symmetric positive definite P matrix (common P matrix in short), which is related to stability,

is proposed for N subsystems which are under a pairwise commutativity assumption. Robustness issue under

modeling uncertainty in each subsystem is then considered by proposing a quadratic stability criterion and a

method of determining uncertainty bounds. Finally, it is shown that the pairwise commutative assumption can be

in fact relaxed by interpreting the uncertainties as mismatch parts of non-commutative system matrices. Several

examples show the validity of the proposed methods.

I. Introduction

Fuzzy logic has been considered as an efficient and
effective tool in managing uncertainties of systems
since Zadeh’s seminal paper [Zadeh [1]]. Among many
applications of fuzzy logic, control design appears to
be one that has attracted a large amount of attention
in the past two decades.

In general, fuzzy control system can be classified as
Mamdani type and Takagi-Sugeno (T-S in short)
type. In spite of certain qualitative analysis, the
Mamdani type fuzzy control system is still generally
recognized as empirically-based. One major reason of
this is the lack of successful fuzzy models useful for
the Marndani type fuzzy control system. On the other
hand, the T-S type fuzzy control system mainly focuses
on this subject (see, e.g., Takagi and Sugeno [2]).

There are some work in literature that are mainly

concernad with the stability analysis of T-S fuzzy
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model. The existence of a proper T-S fuzzy model is
first assumed. Tanaka and Sugeno [3] showed that the
stability of a T-S fuzzy model could be shown by
finding a common symmetric positive definite matrix
P for N subsystems. This has been considered a very
important result and some refining efforts have been
pursued thereafter. There has not been, however, a
systematic way to find the common P matrix in a
general framework. Kawamoto ef al. [4] only con-
sidered a 2nd order system. Tanaka [5] suggested the
idea of using LMI (Linear Matrix Inequality) for
finding the common P matrix. Xia and Chai [6]
proposed a stability condition which is based on ad k
oc membership values. Zhao ef al. [7] extended some
past work to consider uncertainty.

The current work endeavors to tackle the stability
issue of the T-S fuzzy model by first considering the
problem as related to the “switching system” [Fu and
Barmish [8] and Narendra and Balakrishnan [9, 10]].
In a sense, the central issue lies in the search for a
common positive definite matrix P for multiple matrix

equations. Then uncertainty is introduced into the set-
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ting and robustness analysis for stability is performed.
It is shown that a somewhat stringent assumption for
the common matrix P in fact can be relaxed.

The main contributions of the paper are threefold.
First, an iterative algorithm for the choice of a common
P matrix is proposed. It is shown that the algorithm
can indeed reach a solution for systems under a struc-
tural assumption. Second, modeling uncertainty of
T-S fuzzy model is introduced. A robustness analysis
on the influence of uncertainty toward stability is also
suggested. The analysis is non-conservative and
computationally straightforward. Third, it is shown
that the structural assumption can be in fact relaxed
by interpreting the uncertainties as mismatch parts of
system matrices. This in turn means this algorithm is
applicable to both the uncertainty and non-structured

case.
II. Background Materials

2.1 Takagi and Sugeno’s Fuzzy Model

Takagi and Sugeno [2] proposed an effective way to
represent a fuzzy model of a dynamical system. It
uses a linear input-output relation as its consequence
of individual plant rules'. A T-S fuzzy model is

composed of N plant rules that can be represented as

Rule izif x, (k) is M: and x,(R) is M} and - and %, (k) is M
then x(k +1)=A;x (k) + B;u(k),i=1,2,---,N (1)

where

k:discrete time index,

x;:j" state (or linguistic) variable,

Mjiia fuzzy term of M; selected for Rule i,

M;:fuzzy term set? of ¥,

x (%) :state vector and x (k) = [x, (k) x, (k) - x,, (k)]T € R",
u(k):input vector and » (k) = [u, (&) uy (k) - u,,,(k)] TeRr™

A;ER"X”,
B; € R*xm,

For any current state vector x (&) and input vector
u(%), the T-S fuzzy model infers x (& +1) as the output
of the fuzzy model as follows:

N
T wi(®) [4; x(R) + B u(®))]
2(k +1)=—— . @
=1
where
N .
w; (k)=__l'[] M (x; (k). )

For a free system (i.e., #(k) =0), eq. (2) can be written
as

N

2 wi(k) A; x(k)
2k +1)="= @

N
z w,‘(k)
j=1

It is assumed, from now on, a proper T-S fuzzy

model in the form of eq. (4) is available.

2.2 Formulation of the Stability Problem
Tanaka and Sugeno [3] suggested an important cri-
terion for the stability of the T-S fuzzy model.

Theorem 1. [Tanaka and Sugeno [3]}

The equilibrium of the fuzzy system (4) (namely, x = 0)
is globally asymptotically stable if there exists a common
symmetric positive definite matrix P such that
AT PA;—P<0 foralli=1,2,~,N. (3)
So far, however, no systematic way of finding the

common P exists. It is suggested to translate the stab-

ility problem of T-S fuzzy model to be one for the
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following N-simultaneous linear systems:

xilk +1)=A;x;(k), i=1,2,---,N (6)
where the system matrix 4; for the 7% plant rule is the

same as eq. (1).

. Stability Analysis of Linear T-S Fuzzy
Model

Narendra and Balakrishnan [10] suggested a sys-
tematic way of finding the common P matrix of N
simultaneous continuous-time linear systems under a
pairwise commutativity assumption. The results are
now extended to discrete-time systems.

At first, it is considerd N =2 for simplicity. Let a
T-S fuzzy model be with two plant rules, i.e., 4; and
A;.

Theorem 2. Suppose that 4; and 4, are Hurwitz and
commutative, i.e., 4; 4,= 4, A;. Consider the following

two Lyapunov equations

ATP|A|_P1= -0
AP 4,~Py= —P,

0]
®)

where Q > 0 and P; and P; are the unique symmetric
positive definite solutions of egs. (7) and (8), respect-

ively. Then we always have

ATP4;-P,<0,i=1, 2. ©
Proof: Substituting the P, in eq. (8) into eq. (7) yields

—Q=AT(—A] PyA, +P) A +A] Py A~ Py

(10)
=—ATATP A, A\ + AT P A + AT P Ay~ Py

Since 4, and A, are commutative, we have (4,, 4;)7
and hence 47 AT= 47 A7. Therefore, eq. (10) becomes

—Q=—ATATP, A, A, + AT P, A, + AP, A, - P,

112

=AT(—ATP,A) A, +ATP A, + AT P, 4, - P,

(an
=AT(—ATPy A, +P)A,—(—A] P, 4, +P)
=AW, 4,- ¥,

where
Wi=—ATP A4, +P;. (12)

Since Q> 0 and A4, is Hurwitz, the “solution” and is
unique.
By choosing

Vix(k)=xT (k) P,x (k) (13)

for both systems, we have, for the A, system,

AV =xT (k) (A] P, A, — P x (R) (14)
=—xT(k) Pix(B)<0,V x(k) #0

since P; > 0 from eq. (7). In addition,

AV =xT (k) (4] Py A, — P)x (k) (1s)
=—xT(RAY, x(R)<0,V x(k) #0
for the A; system since ¥, > 0. Egs. (14) and (15)
show that 4P, 4;,— P, <0 fori=1,2.
' (End of Proof)

Theorem 1 shows that P, can be used as the common
P matrix of the T-S fuzzy model with two plant rules.
The technique can be extended to a T-S fuzzy model
with N plant rules, i.e., 4, 4,,..., Ay.

Theorem 3. Suppose that A4; is Hurwitz for all =1,
2,..., N and A4,’s are pairwise commutative, i.e.,

AjAj =A; 1 Aj, j=1,2,+ N—1. (16)

Consider the following N Lyapunov equations

AITPIAl"P|=_Q
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APy A, ~Py= —P,
: a7
AN PyAy—Py=—Py_,

where 0> 0 and P, =1, 2,.., N is the unique sym-
metric positive definite solution of each equation.
Then we always have

ATPyA;—Py<0,i=1,2,..,N (18)
Proof : The proof follows the procedure similar to that

of Theorem 2.
(End of Proof)

Remark 1: The choice of the order of 4; is apparently
non-unique. One may in practice attempt to label 4;
in the most appropriate way in order that the
pairwise commutativity is achieved.

The following example illustrates the use of The-
orem 3.

(Example 1) Consider a T-S fuzzy model with three
plant rules and two state variables. Let the corre-

sponding A;’s be

08 0.16

1.0 0.2] A=[ 05 012
M 024 04 |

A‘=[—0.3 0.5 0.18 0.2 ""‘“’:[—

It can be easily seen that they are all Hurwitz. Fur-

thermore, they are pairwise commutative since

B _[ 0.464 0.16

Ay = A4, "[ —0.24 0.064‘ and
N [ 03712 0.1280

Ads=4LA4= 0160 0.0512)"

Let Q =1, we then have the following:

o s o _[ 73084 2.0053
Ay Prai=Pi==Qyields Pi=| )03 22579 |
o g b P _[ 92163 2.6734

A Podr=Py=—Pyyields Pr=| ) 0nn 26239 |
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19.3746 6.5438
6.5438 47113 |

A§P3A3“P3= “P3 yields P3=
The P; is symmetric and positive definite since the
corresponding eigenvalues are 21.8702 and 2.2157.
Now, let us check the legitimacy of P; to be the com-
mon P matrix.

Table 1. Common Matrix P

ATpa, - P, Eigenvalues ATP 4, -P, <0
=1 -3.6160 and -1.3360 satisfied
i=2 -17.4354 and -2.0505 satisfied
i=3 -10.1642 and -1.6760 satisficd

Table 1 shows that P; is indeed a common P matrix
of the T-S fuzzy model.
(QE.D)

In summary, a common symmetric positive definite
P matrix which guarantees the stability of a T-S fuzzy
model with N plant rules can be found systematically
from Theorem 3. It consists of solving N Lyapunov
equations iteratively from an arbitrary symmetric Q
> 0. The resulting Py is indeed a common symmetric
positive definite P matrix. The symmetric positive
definite matrix Py is obtained under the assumption

of Hurwitz and pairwise commutative system matric&s.

IV. Quadratic Stability Analysis of Linear
T-S Fuzzy Mode!

A T-S fuzzy model composed of N uncertain plant

rules can be represented as follows:

Rule i:if x\(k) is M} and x,(k) is M} and - and x,,(k) is M}
then x(k +1)=[A4; +AA;(R)]x(k),i=1,2,--,N (19)

where A's are the nominal system matrices and the
corresponding A A4;(k)’s are (possibly) time-varying
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uncertainties. It can be translated to

%k +D=[4+A 4B ]| xR, i=1, 2N (0)
for stability analysis like eq. (6).

For systems under (possibly) time-varying unce-
rtainties, quadratic stability performance can be used
as a basis for stability study. The quadratic stability
performance can be readily extended to the systems in

eq. (20). The following definition is proposed.

Definition 1. Consider following system with N

uncertain plant rules
ik +1) =4 +A 4R |x:i(R), i=1,2,,N

where AA;(k) €Q; and Q; is a compact set. The
uncertain system is quadratically stable if there exists
a common symmetric positive definite matrix P and a

common positive constant A such that

xT“m+EVth+&%Jﬂxs—yMHi=L2¢3N
@n
forall E;€Q;and x € R*forall 1={1, 2,-- N}.

Checking quadratic stability of a T-S fuzzy model in
(20) using the Definition 1 directly may be sometimes
difficult, especially for high dimensional case. There-
fore, a more realistic way to use Definition 1 is
required. One may expect to use the nominal system
only since the uncertainty is unknown anyway. In
Section 3, a common P matrix (i.e., Py) is chosen sys-
tematically by way of Theorem 3 under the pairwise
commutativity assumption. Motivated by this, the Py
can be used as a reasonable choice of the common P
in eq. (21) with the pairwise commutativity assump-
tion of nominal system matrices. The following prop-

osition is made.

Proposition 1. The T-S fuzzy model (20) is qua-

dratically stable if there exists a positive constant A
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such that

#" (4 +E)T Py(4; +E)~Py]x < —Alxl’, i=1,2,, N
(22)

for all E;€Q; (s are compact sets) and x € R",
i={1, 2,»-,N}. Here A4;s are Hurwitz and pairwise
commutative and Py is chosen from the corresponding
nominal system by way of Theorem 3.

Corollary 1. A T-S fuzzy model in eq. (20) is qua-
dratically stable if

MaX Amey | (4; +E)T Py(A; +E) =Py | <0

E€Q,

23)

holds for arbitrary E;€Q; (s are compact),
i={1, 2,--, N}, where 4;’s are Hurwitz and pairwise
commutative and Py is a common symmetric positive
definite matrix. Here An,[:] denotes the maximum
eigenvalue of the designated symmetric matrix.

Even though (23) is more explicit than (22), it is
still difficult to apply it in practice. Corollary 1 can
be more tractable by adding an assumption to £, i.e.,
Q is convex set. It is shown in Gu et a/. [12] under
the convexity assumption, the maximum in (26) for N
=1 can be reached by one of the protruded points
(i.e., vertices) of the set Q. The additional convexity
assumption of Q does not degrade seriously the gen-
erality of uncertainty since elements of E in Q can
often be represented by scalar bounds, i.e., le;(/, m)|
< d; (k) where e;({, m) denotes the (/, 7 element of
E; and d;(k) denotes a possibly time-varying scalar
bound. Therefore, a theorem which makes the Cor-
ollary 1 to be more tractable can be made for a T-S
fuzzy model with N uncertain plant rules using the

convexity assumption as follows.
Theorem 4. Consider the maximization problem
(24)

Max Am [(4; +E)7 Py(4; +E) —Py]
E€qQ,

where Py is a fixed symmetric positive definite matrix
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and Qs (=1, 2,-++, N) are compaci and convex sets
for the 7*# plant rule. The maximum for each 7 can be
reached by one of the protruded points of each set ;.

Remark 2:Corollary 1 and Theorem 4 suggest that
only protruded points are needed to be checked for
quadratic stability.

The following example illustrates the use of Coro-
llary 4.1 and Theorem 4.1.

(Example 2) Consider a T-S fuzzy model in Example

1. The system matrices are

08 0.16

1.0 0.2] A=[ 05 012
B B 024 04 |

A‘=[—o.3 05 0.18 02 ]""“’:[—
They are Hurwitz and pairwise commutative as
shown in Example 1. For simplicity, let the uncer-
tainty sets for each plant rules be given as

d,(k) d,(k)
d (k) d,(k)

AA (R)=AAd,(R)=AA;(k)=
where d;(k) and d,(k) are uncertainty parameters
satisfying |d, (B)| < p and |d, (k)| < 2p with p=0.02.
Then the uncertainty sets Q,, €5, and €, become

Q=Q,=0;=
TR Ay dy | < 2p) {dild, | < p)

(29

Eq. (25) shows that Q,, Q, and Q; are convex and

there are four protruded points in each uncertainty
sets. They are

— -2 —
E = p p],52=[ 2’; 2[)],

=2p —p -p
E=| * —2p],E4=[p 20 (26)
—2p p 2p

Quadratic stability of the system can be checked using
Corollary 1 and Theorem 4. As in Example I, the

common symmetric positive definite matrix Ps is

_[19.3746 6.5438

Pi=| 65438 47113

by Q»= 1. Corollary 1 and Theorem 4 yield

Tables 2~4 show that the uncertain system is qua-
dratically stable by Proposition 1.

(QE.D)
Remark 3:1It is shown that the quadratic stability in
Proposition 1 can be checked by using Theorem 4
under the assumption of compact and convex uncer-
tainty set. It means that A in Proposition 4 can be

determined from the result of Theorem 4 as follows:

A=min{};} @n
1

where A;’s are determined from

2T [(A:+E)T Pyl(4; +E)=Py|x < —2lxl%. (28)

Table 2. First Plant Rule 4,

E, Eigenvalmol‘[(.—/ll +E) B4, +E,)—P3] ,1,",,,‘[(/1I +E) B(4 +Ei)-1z,]
E, 53348 and -13737 13737
E 37867 and 0.9989 20,9989
5, 38249 and -1.2390 12390
E, 25762 and -0.4814 204814
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Table 3. Second Plant Rule 4,

Ei | Eigenvalues of[(A2 +E) P4, +E) - P3] Ao {(A2 +E) P4, +E,) - 13]
E, 2182529 and -2.0580 2.0580
E, 2173527 and -2.0309 2.0309
E ~17.5272 and -2.0067 2.0067
Ex 7165355 and -1.9873 19873

Table 4. Third Plant Rule A,

Ei | Eigenvalues of[(A3 +E) B4, +E,) - P3] A [(A3 +E) B4, +E,) - P3]
E, ~11.5460 and -1.6853 16853

E, ~10.0617 and -1.6400 16400

E, ~10.3318 and -1.5925 -1.5925

E. -8.7684 and -1.5425 -1.5425

In summary, the symmetric positive definite common
matrix Py can be used for the quadratic stability
analysis of N uncertain subsystems which have
Hurwitz and pairwise commutative system matrices.
With the assumption of compact and convex hype-
rpolyhedron uncertainty set, the quadratic stability of
T-S fuzzy model with uncertainties can be checked
easily. Therefore, the common matrix Py can indeed
play more general role than Narendra and Bala-
krishnan [10].

V. Analysis of Uncertainty Bounds of Lin-
ear T-S Fuzzy Model

Section 4 considers the quadratic stability of a general
T-S fuzzy model with N pairwise commutative nominal
system matrices. The uncertainty sets Q;’s are fixed,
1.e., the uncertainty bounds are specified in Section 4.

It is, however, also interesting to finding the maxi-
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mum allowable uncertainty bounds for the T-S fuzzy
model in eq. (20) using Py as a common P matrix.

The problem can be formulated as follows.

Problem 1:Consider a T-S fuzzy model with N uncer-

tain plant rules as
xi(k +1)=14; +A A, (R) x;(R), i €{1, 2,-, N}

where A4;’s are Hurwitz and pairwise commutative and
A A;’s are (possibly) time-varying uncertainties. Find

the maximum possible sets A, A;, - Ay such that
xT [(A, +E,')T PN(A,'+E,')—'PN]IS —A."xllz, le{ 1, 2,“',N}

holds for arbitrary E; € A; where Py is the common
symmetric positive definite matrix determined from
the corresponding nominal system and A is a positive

constant.
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Gu [13] proposed an algorithm calculating the maxi-
mum allowable uncertainty bound for the system in
(20) with N =1 under the additional assumption that
Q has fixed shape but “adjustable” size. A new uncer-
tainty set Qs with the additional assumption can be
stated as follows. Let
Qs={0E |E €Qfirea} 29
where Qs is a compact and convex set with fixed
shape and size, 6 is constant. The constant § is shown
to be non-negative in Gu [13] in the case of stable
nominal system. By relating € to the uncertainty
bound, eq. (29) means that the uncertainty bound is
represented as scalar multiple to a fixed prototype of
uncertainty bound. It is solvable and quite general
since many problems can be formulated in this way
by choosing appropriate fixed uncertainty set Qy;eq.
The uncertainty set in eq. (29) can be extended to N
systems by defining

Q5,=1{0: E fivea, | Efized, € Qfizea,} (30)
where the subscript i denotes the ith plant rule.
Problem 1 can be restated as follows using the uncer-

tainty set in eq. (30).

Problem 2:Consider a T-S fuzzy model with N uncer-
tain plant rules as

xi(k +1)=[4; +A4;(B))x;(k), i €{1, 2,--, N}

where A;’s are Hurwitz and pairwise commutative,
A A;(k) €Q;,. Here is defined as in eq. (30). Find the
maximum possible sets A;, Az, -+, Ay with

A;={(8Dmax Efired,| Efixed, € Qpisea,} 31

such that (20) is quadratically stable where (6;)max

denotes the maximum value of §,.

From the pairwise commutativity of 4;’s and Cor-
ollary I, Problem 2 can be reduced to finding 4; such
that

max  Apgy

E et S Optsea,

[ (Ai+8 Efisea) ™ Pu(4i 6 Egices) = Pn | <0
G2

foreverys,i=1, 2,-, N.

Gu [13] suggested an algorithm of finding the maxi-
mum possible uncertainty bound of the system in (20)
with N =1 by using the uncertainty set defined in eq.
(29). 1t can be extended to N systems in Problem 2 to
determine the maximum possible bound of each plant
rules of T-S fuzzy model in (32) and the following

proposition holds.

Proposition 5.1. Consider the T-S fuzzy model with N

uncertain plant rules as
xR +1D)={4;+A 4B x;(kR), i €{1, 2,--,N}

where As are Hurwitz and pairwise commutative
and A 4;(k) €Q;,,

Qs,={0; Efixed,| Efized, € Qfizea,}.

Suppose that Qyiq’s are fixed sets which are com-
pact and convex hyperpolyhedron. Then the maxi-
mum possible bounds of A 4;(k)’s defined by

Ai = {0 max Efived,| Efixed, € Qizea,}, i =11, 2,:++,N}

can be determined by solving the following

0 —Eg
e =max { f;| “ ixed, | g,
5,‘ (Efixed,) {B Amﬂx —E ;ixed, 0 é
Pyl 4 ] }
=B, =0 33
B & py ¢ (33)
1 .
= m - ,i1€{1,2,-,N} (34
(5i)max E,udlg)éﬂ“l 5,‘ (Efixed,) { } ( )
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via the finite protruded points of each Qjir’s.

. =1—2]4 =[12]
Efixed, [—2 1 Eﬁxed, 2 1l

Here B; =—;— 
‘ For simplicity, it is assumed that Qyizes, =Qjives, = Vfised, -
The following example illustrates the use of Prop- The following results are obtained from egs. (33) and
osition 2. (34):
Tables 5~7 show that the maximum eigenvalues
(Example 3) Example 2 shall be revisited with some for each system matrices A4;, 4,, and A, are 38.8201,

modifications. Suppose that

Qfizea, ={ E! ? }

where

8.0488, and 14.3584, respectively. This in turn means
that the maximum uncertainty bounds for each plant
E* 3 rules are their reciprocals, i.e., 0.0258, 0.1242, and

Fized,” " fixed,”  fixed,”  fixed,

0.0696, respectively. These can be interpreted as the
bounds of tolerance when the nominal system is

under the pairwise commutativity assumption.

o -1 =2 2 _[—-1 2
Eﬁred.-”[~2 - ]Efixzd,_ 2 _1] (QED)

Table 5. First Plant Rule 4,

Etvea, Eigenvalues g, Maximum eigenvalue
Elyees -38.8201, 69381, -0.4060, 0.8256 6.9381
E}ea 19.7271, -15.0050, 0.6970, -0.4376 19.7271
E e, -19.7271, 15.0050, -0.6970, 0.4376 15.0050
El s 38.8201, -6.9381, 0.4060, -0.8256 38 8201
Table 6. Second Plant Rule 4,
E}m " Eigenvalues f3; Maximum eigenvalue
E}mdl -8.0488, 45479, -0.4801, 0.6941 4.5479
E}md‘ 6.0621, -6.2352, 0.6347, -0.5085 6.0621
E}M‘l -6.0621, 6.2352, -0.6347, 0.5085 6.2352
E}wdl 8.0488, -4.5479, 0.4801, -0.6941 8.0488
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Table 7. Third Plant Rule A,

E}k o Eigenvalues f; Maximum cigenvalue
E,lﬁ.red, -14.3584, 53170, -0.4322, 0.7759 5.3170
E}k d 8.8935, -9.1748, 0.6800, -0.4814 8.8935
edy
E}ixed, -8.8935, 9.1748, -0.6800, 0.4814 9.174_18
hopd 14.3584, -5.3170, 0.4322, -0.7759 14.3584
fixed,

Example 3 can be checked indirectly by reconsidering
the results of Example 4.2. The uncertainty bound p
was found to be 0.02 in Example 2. It is smaller than
the maximum allowable bound 0.0258 in Example 3.
Therefore, it can be reasonably explained why the
system in Example 2 is quadratically stable. The greater
maximum eigenvalues for 4, and A4; in Example 2
can be explained by the greater maximum allowable
bounds of 4, and A in Example 3.

Remark 3:In this section, analyses are focused on the
T-S fuzzy model with uncertainties which has Hurwitz
and pairwise commutative nominal system matrices.
One may, however, interpret it as non-Hurwitz and/
or non-pairwise commutative system matrices without
uncertainties. It means that the Hurwitz and pairwise
commutativity assumption in Section 3 can be relaxed
by interpreting the uncertainties flexibly. Consider the

following system

ik +1)=A;x; (k)i €{1, 2,~--,N}

where 4;’s are non-Hurwitz and/or pairwise non-com-
mutative. One can consider the decomposition of 4;’s
such as

A=A +AA; i €1, 2, N} (35)

where

119

AjAjy =Ajp Aj, FE(1, 2, N=1} (36)
The original system can be rewritten as follows:
%k +1D)=[4;+A4 |5 (k) i €01, 2, N} (D)

where A_,-’s are Hurwitz and pairwise commutative.
The “mismatched” portion A A,s can be treated as
uncertainties as in Section 4. Therefore the pairwise
commutativity assumption in Section 3 can be relaxed.
In summary, uncertainty bounds of T-S fuzzy
model can be determined from the symmetric positive
definite matrix Py which is obtained from Hurwitz
The

uncertainty bounds are represented as a scalar multi-

and pairwise commutative system matrices.

plier of fixed prototypes of uncertainties Qyy.g’s. In
the case of convex hyperpolyhedron Qﬁ,,zdi’s, the
problem is limited to the search of finite protruded
points. Furthermore, the uncertainties can be interpreted
more flexibly in order to relax the Hurwitz and
pairwise commutative A-matrices assumption in

Section 3.

VI. Conclusions

Stability issues of linear T-S§ fuzzy model is inve-
stigated thoroughly under the assumption of pairwise
commutative system matrices. At first, a systematic

way of finding a common symmetric positive matrix
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P is proposed. It can be determined analytically from
any Q>0 and Py is revealed to be the common P
matrix. The common P matrix can be used for the
stability analysis of linear T-S fuzzy model with
uncertainties. The problem of quadratic stability of a
linear T-S fuzzy model with N uncertain plant rules
where the corresponding nominal system matrices are
pairwise commutative is then investigated. A quadratic
stability criterion for T-S fuzzy model is proposed. A
method of finding uncertainty bounds is also inve-
stigated using the common P matrix. Several examples
verify the validity of the proposed methods. Finally,
the possibility of relaxation of the pairwise commuta-
tivity assumption is mentioned by interpreting the
uncertainties as mismatch parts of non-commutative

system matrices.
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