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Shifted Nadaraya Watson Estimator

Sung S. Chung?)

Abstract

The local linear estimator usually has more attractive properties than
Nadaraya-Watson estimator. But the local linear estimator gives bad performance
where data are sparse. Miiller and Song proposed Shifted Nadaraya Watson estimator
which has treated data sparsity well We show that Shifted Nadaraya Watson
estimator has good performance not only in the sparse region but also in the dense
region, through the simulation study. And we suggest the boundary treatment of
Shifted Nadaraya Watson estimator.

1. Introduction

Nonparametric curve estimation is a useful and powerful tool for finding the structure in
data. In particular, there is its strength in case that the structure in data is difficult to be
ascertained by the parametric method. See, for example, the books of Silverman(1986), Eubank
(1988), Miiller (1988), Hardle (1990), Scott (1992) and Wand and Jones (1995).

Suppose that we have a set of bivariate data (X;, Y;), =1, -, n. The regression
relationship is commonly modelled as

Y, = m(X;) + &, i=1,,nm (1)

where &;,', &, are independent random variables with the expectation 0 and the variance
6 2. To estimate the regression function, m(x) = FE(Y|X=1x), the kernel-based regression
estimators are often used because of their simplicity and interpretability.

An intuitively attractive kernel-based regression estimator is Nadaraya-Watson estimator
( mpaw(x;h)) proposed by Nadaraya (1964) and Watson (1964). An improved estimator is

local linear estimator ( 7.7 (x;A)), proposed by Stone (1977), Cleveland (1979), Miiller (1987)

and Fan (1992). These estimators are based on moving locally weighted averaging. Fan (1992,
1993) showed that local linear estimator has the desirable asymptotic MSE properties as well
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as minimax optimality properties, in the interior of the design space. And Fan and Gijbels
(1992) showed that it automatically adapts itself at boundaries to achieve good performance
there too.

But in case when the data are sparse, local linear estimator often gives bad performance.
This is due to its infinite variance in random design contexts. See Seifert and Gasser (1995),
Hall and Marron (1996) and Hall, Marron, Neumann and Titterington (1996). Miiller and Song
(1993) suggested Shifted Nadaraya Watson estimator ( #mguw(x;#)) which gives much better
performance when the data are sparse.

Figure 1(a) shows an example of ﬁw(x;h) and ﬁu‘(x;h). r/)\lLL(x;h) gives better
behavior than 7yw(x;%) except the center region. But #;; (x;h) shows terrible feature
near the center. Figure 1(b) shows m svw(x;h) and m 12 (x;h) for the same data with
Figure 1(a). ﬁsw(x;h) is almost same to ﬁu_ (x;h) where the data are dense. But in
the center area where the data are sparse, it has much better performance than #2;; (x;h).
The bandwidth used here, is the direct plug-in bandwidth, jz\Dpf, of Ruppert, Sheather and
Wand (1995).

In this paper, we show that r/i\z_gNW(x;h) has good performance when the design densities
are sparse as well as when they are dense through the simulation study. And we suggest the
boundary treatment of Mguw(x;%) which wasn’t suggested the exact method by Mammen
and Marron (1996). In section 2, we describe the kernel-type regression estimators including

mawx;h), mpr(x;h) and Meyw(x;hk). In section 3, we compare three estimators in the
several setting through Monte Carlo studies.
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Figure 1. Kemel regression estimates with the simulated data  The solid line is true regression
function, m(x) = 4\/—}\/ 1 —x with n=100, 0‘2=0.01 and h=0.0432 for the normal kernel (a)
The dashed line is Myw(xh), the dotted line is myy (% h); (b) the dashed line is

Monw( % h), the dotted line is myy (2 k).



Shifted Nadaraya Watson Estimator 883

2. Shifted Nadaraya Watson Estimator

Given a set of bivariate data (X, Y1), -,(X,, Y,), we estimate the regression function in
(1), based on the data. For simplicity, we will assume X, takes the value in [0, 11

Nadaraya-Watson regression estimator is given by

R n_l V4 Kh(X,' -—x)Y,
maw(x; h) = = . (2)
n1 2 K,(X; —x)

Note that the denominator in (2) is the kernel density estimator of f (x), the marginal density of X.
Here, K h( u) = K( u/ h) / h and K is called the kernel function. The scale p:irameter h is called the

pandwidth or smoothing parameter and is crucial to the performance of r/;t(x;h). The kernel function,
K, is a continuous and symmetric probability function. It is well known that the choice of the kernel

function, K, is of essentially negligible concern compared to the choice of the bandwidth (Silverman,
1986).
Local linear regression estimator is given by the value of ?)\0 when by and b, are chosen

to minimize the local least squares function

3 ¥~ by by (Xi— D) Ky(Xi—2).

And this can be expressed as follows
o d {(S@h— s Xi—x) KX -0 Y,
A ()= 2 520 h) 5 (3B — 5, (x5 )

where §,(x;h)=n"' 2 (X;—0)" Ka(X;—%), 7 =012
Let %(x) denote the kernel based local center of mass, ie.
Ky(X; — x)X;

2(x) = £ : (3
'gKh(Xi —x)

Then at E‘(x), Shifted Nadaraya Watson estimate is defined as follows (Miiller and Song,
1993)
maw( E(x);B) = maw(x;h) 4)

Hence mgyw(x;h) is a correction, i.e. a horizontal shift, of maw(x;h) taking into account

the difference between the center, X, of the window and the local center of mass, %(x), of



884 Sung S. Chung

the design points, X;’s. For the normal kernel, %(x) is strictly increasing and so %_l(x)
exists. Then r/r\LsNW(x;h) is uniquely defined for x& [ €(0), €(1)] and (4) can be
replaced by r/;LSNW(x;h) = 7/;tNW( %_l(x);h). Miiller and Song (1993) showed that

m svwlx; h) and m 12 (x; k) have the same asymptotic behavior for x in the interior of [0,

1. But 7pw(x;%) has a more complicated bias expression than my; (x;h) and O(h)
boundary bias like Figure 1(a) (Fan, 1992, Wand and Jones, 1995).

And Mammen and Marron (1996) showed that asw(x;h) has the good performance in
the boundary regions. It is quantified by

msnw(x; ) = m(x) + O (n~%5)

for allx € [0, %(0)] Note that this is same for 7/ﬁLL (x;h). They suggested using the

smooth linear extrapolation in the boundaries. But used for several data sets, the linear
extrapolation gave very large variance. So we propose using the weighted average of the least

squares estimates and @SNW(x;h) near the left boundary region, i.e.

Kx) 0< x< &)
man(x;i k)= w(x) mawl Z )+ (1—w(x) Kx)  Z(0) <x< 22(0) (5)
maw( & (x); k) x> 2%(0)
22(0)—x

where w(x)= and /X(x) is the least squares fit of a line with the points in

2€(0)— 2(0)
[ 2(0), 2%(0)]. Similarly, this method is applicable to the right boundary region.

3. Simulation Results and Discussions

Three estimators have same asymptotic properties in the interior region. In this section, we
compare three estimators in several design settings through the simulation study. In our
simulation study, we use MATLAB program in UNIX. We consider four regression functions
as follows

(mD)  m(x) = cos(27%).
1 if & (0, )

(m2) m(x)=‘cos(47t(x~1/4)) if xe (4.9,
1 if xe (4.1)
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m3) m)=1—4(x— —%—)2.
(md) m(x) =4Vx V1—x.

Also we consider the random designs

@ X ~ K0,1).
(d2 X=V U where U ~ U(0,1).

Ug with prob. &
d3) X= , where U ~ U(0,1) and Uy denotes the
' U an with pTOb. %‘

order statistic from Uy, -, Uy. And we consider &; —~ N(0, ¢*) independent of X with
6=0.2. To estimate the bias and the variance of the regression estimator, 500 replications
are performed. We use the normal function as the kemel function and the direct plug-in

bandwidth selector, % ppr, of Ruppert, Sheather and Wand (19%) as the bandwidth. To reduce
computational effort, we use the binning approach suggested by Fan and Marron (1994). This
is useful because the data only need to be binned once. So binned computation has the

advantage of requiring only O(N) kernel evaluation, this allows very fast computation of

m(x;h) over the grid points. Here N denotes the number of grid points. We use N=401
recommended by Fan and Marron (1994). As the method for obtaining grid counts that has
good properties, we use "linear binning” (see Hall and Wand, 1993).

Figure 2, 3 and 4 show the estimates of the expectations and mean squared errors of three
estimates, and the true regression functions under design (dl), (d2) and (d3), respectively.
Under these designs, three estimates are almost same in the dense region, but are pretty
different in the boundaries or the sparse region. In Figure 2, we can see that myw(x; k) has
more bias but less variance than My (x;h) and Moy (x;h). And monw(x; k) is almost
same to M 1. (x;h) at the boundary region. Note that the marginal density of X is uniform.

Figure 3 with the sparsity in the left boundary, shows that the bias of r/;LSNW(x;h) is a
little bigger than that of my; (x;h) but the variance of r/ﬁSNW(x ;h) is much smaller than
that of ;ﬁL I (x;h) in the left area. Figure 4 with the bimodal marginal density of X, shows
the same phenomenon with Figure 3. But we can see that ﬁLL(x;h) suffers from very

large variance in the boundaries and the center region. This was discussed in Fan(1992) and
Mammen and Marron (1996).
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Figure 2. Estimates of E(m(x;h)) and MSE(m(x;h)) under design (dl), and true regression
functions. {(a),(b)}, {((c)(d)}, {((e)(f)} and {(g)(h} are the estimates of { E(m(x;h)),
MSE(m(x;h))} from the regression functions (ml)-(m4), respectively. m(x)(solid line),
menw(x; h)(dashed line), myy(x;h)(dotted line) and iy (x;h)(dot—dashed line).
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Figure 3. Estimates of E(m(x;h)) and MSE(m(x;h)) under design (d2), and true regression
functions. {(a),(b)}, {(c)(d)}, {(e)(f)} and ((g)(W} are the estimates of {E(m(x;h)),
MSE(m(x;h))} from the regression functions (ml)-(md), respectively. wm(x)(solid line),
manw(x; h)(dashed line), myyx;h)(dotted line) and my; (x;h)(dot-dashed line).
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Figure 4. Estimates of E(m(x;h)) and MSE(m(x;h)) under design (d3), and true regression
functions. {(a),(b)}, {(c)(d)}, {((e)(f)} and ((g)(h)} are the estimates of {E(m(x;h)),
MSE(m(x;h))} from the regression functions (ml)-(md), respectively. m(x)(solid line),
W svw(; h)(dashed line), miyAx; h)(dotted line) and my; (x;k)(dot-dashed line).
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4. Discussion

We have seen, through the simulation study, that m SNW(x;h) is better than the other two

estimators when the data are sparse. Also r/ﬁw(x;h) is not bad even when the marginal
density of X are uniform compared to other estimators.
Under the designs (d2) and (d3), the bandwidth, hppr, is often too small. So we use the

interpolant of data in the sparse region. It is essential to use the kernel function with the
unbounded support in order to avoid for denominator in m(x;h) to be 0. When the marginal
density of X has the unbounded support, the interval [0,1] should be replaced by the range of
the design points.

Near the boundaries, there are still bias in all estimators. It could be improved by using the

(boundary kernel. Xx) and [ 2(0), 22(0)] in (5) should be studied further to reduce the
boundary bias.
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