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A Study on Log—Fourier Deconvolutionl)
Ja-Yong Koo2 and Hyun-Suk Park3)

Abstract

Fourier expansion is considered for the deconvolution problem of estimating a
probability density function when the sample observations are contaminated with
random noise. In the log—Fourier method of density estimation for data without noise,
the logarithm of the unknown density function is approximated by a trigonometric
function, the unknown parameters of which are estimated by maximum likelihood. The
log-Fourier density estimation method, which has been considered theoretically by
Koo and Chung (1997), is studied for the finite-sample case with noise. Numerical
examples using simulated data are given to show the performance of the log-Fourier
deconvolution.

1. Introduction

Suppose that ¥ is an observable random variable such that
Y=X+Z.

Here we assume that X and Z are independent random variables with probability density
functions fx and fz, respectively. Then Y has the density

fr)= [ f2(3—0) fx (Ddx. (1)

Assuming f, is known, we will consider a deconvolution problem of estimating fx from a
set of independent observations Yj,...,Y, having the common density fy.

Integral equations such as (1) are known as Fredholm equations of the first kind. A
mathematical inversion problem of solving equation (1) for fx, when fy and f; are given, is
often ill-posed, since a small change incurred in measuring fy would give rise to large

perturbations in the solution. This fact makes our deconvolution problem somewhat more
difficult.
Such a model of measurements being contaminated with error exists in many different fields

and has been widely studied in both theoretical and applied settings. Recent related works

1) This paper was supported by a grant from Hallym University, 1996.
2) Associate professor, Department of Statistics, Hallym University, Chunchon, 200-702, Korea.
3) Candidate of Ph. D., Department of Statistics, Hallym University, Chunchon, 200-702, Korea.

-833-



834 Ja-Yong Koo and Hyun-Suk Park

include Mendelsohn and Rice (1982), Carroll and Hall (1988), Liu and Taylor (1989), Stefanski
and Carroll (1990), Zhang (1990), Fan (1991), and Koo and Chung (1997). Koo (1993)
considered inverse problems including deconvolution in a regression framework. Silverman et
al. (1990), Vardi and Lee (1993), and Koo and Park (1996) used the EM algorithm for indirect
estimation problems.

The approximation of log-densities in direct problem, where the main interest lies in the
estimation of fy based on Yi,..,Y, has been considered by many people. Related works
include Stone and Koo (1986), Stone (1990), Kooperberg and Stone (1991, 1992), Barron and
Sheu (1991), Koo (1996), Koo and Kim (1996), and Koo, Lee and Park (1997). Estimates of
density functions based on exponential families have advantages that they are automatically
positive and integrate to one. For other traditional methods for nonparametric density
estimation, such as kernel estimators and orthogonal series expansions of the density rather
than the log-density, refer to Devroye and Gyofi (1985) and Silverman (1986).

In this paper we use numerical simulation to study the finite-sample performance of the
method proposed by Koo and Chung (1997). The approach taken here is to seek a solution
with fx in an exponential family determined by trigonometric functions. In this way positivity
and integrability (to one) of the estimate are ensured. The difference is that while direct
maximum likelihood density estimation in exponential families [Koo, Lee and Park (1997)]
chooses the parameters to match the moments of the trigonometric functions to the sample
moments, in the deconvolution problem the moment of each trigonometric function is related to
a corresponding moment of the direct problem by a factor given by a Fourier coefficient A,
of fz. Thus an appropriate analogue of the maximum likelihood estimate is obtained by
matching moments with respect to fx to 1/A, times the empirical moments associated with
the sample from fy.

2. Log—Fourier Models

In this section we describe log-Fourier density estimation based on a Fourier expansion
having a fixed number of trigonometric functions.

Consider the case when X takes values in the unit interval I=[0,1]. Let B,,..,B; be a
subset of the set of trigonometric functions consisting of {cos2xjx, sin27ix} and let
B={(B,,...B;}. let 6=(6,,..,0;) be a J-dimensional vector, and set s(-;6)= ;Sl 6;B; .

Consider the log-Fourier model

Ax;0)=exp(s(x;0) - (), xel,
where
C(6) = log [ exp(s(x;0))dkx.
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Let ® be the set of 8 such that C(6) (. Then A -; 6, 8 O is a positive density
function on 7. A constant function on I will not used to make the log-Fourier models
identifiable.

Let Xi,..,X, be a random sample of size » from the unknown density fx. The

log-likelihood function corresponding to the logspline family is defined by
10)=L 3 10efx.:0)= 16, B- 0). @
n m=1 =

where B;=n"" ;le(X'")' The maximizing value & of Ix(6) over 8 6 is referred to as
the maximum likelihood estimator (MLE). Let H(4), =@ be the Hessian matrix of C(6)
with elements

f, Bj(x) Bi(x) Ax;8)dx— fl Bi(x)Ax;0)dx fl By(x)Ax;0)dx.

Since H(8) is strictly concave, the MLE ¥ is unmique if it exists. The Newton-Raphson
method can be used to compute & as in Koo, Lee and Park (1997).

3. Log-Fourier deconvolution

Consider the problem of finding unbiased estimators of EB; = EB;(X) where X,,’'s are not
observable but only Y, ’'s are available. For a random variable U, let ¢, denote the
characteristic function of U which is defined by ¢,(¢)=Ee™, and define Cy and Syby
$u(t)=Cy(t)+iSy(t). From the assumption that X and Z are independent, we have the
relation

px(t)=¢v(t)/¢z2(t). (3)
Here and after it is assumed that ¢z (¢)+0for all ¢. Equivalently, we have
Cx =(Cy Cz +SySz)/1921* and Sx =(Sy Cz —CySz)/Idz1%,
where |¢;]2= C%+ S%. Let ’Cy(t)=n'1§cos(tY,.) and Sy(t)=n'1§:sin(tY,,). The relation

i@y,

(3) implies that n_lge "/¢2(t) has the same expectation as n‘lge = or equivalently

that
Cx=(CyCz+ 8ySz)gz1* and Sxy=( 8y Cz— CySz)/IdzI? 4

are unbiased estimators of Cx and Sy; see Lemma 1 in Appendix for the proof of this fact.
From (4), we can find unbiased estimators B; of EB;(X) based on the observable data

Y.'s although X,.'s are not observable, for example, B; = Cx(27j) when
B; (x) = cos (2mix).
Now we give a density estimator of fy when only Y, 's are available. We define the
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indirect log-likelihood function by
1(0)= 3. 0; B, ~C(0), 6< 6. (5)

Though the log-likelihood function /x defined by (2) can be interpreted as a log-likelihood if
X, 's are observable, the indirect log-likelihood function /y(#) in (5) may not be necessarily
interpretable as a log-likelihood; it has been introduced by Koo and Chung (1997) as an object
function to be optimized for the definition of density estimator. Let @ be the maximizer of
the indirect log-likelihood /y(8) over #= ® and refer to ¥ as the maximum indirect
likelihood estimator (MILE). We can note that @ should satisfy the equation S(8)=0, where
S(F) is the J-dimensional vector of elements B;—a(C(6)/36;. Since the Hessian matrix
H(#) of C(8) is strictly convex for #< @, the MILE is unique if it exists. The MILE 7
of fx is now defined by F=7(- ;9).

Consider the case when X takes values in [L, U] which may not be equal to I. First
we define the MILE when L=-—o and U=o. Let Y, and Y, be the first and »th order

statistic of 'Y, ..,Y,. For suitable constants y, and y; to be defined below, let
W,=a¥,,+b, m=1,.. n, where

a=—20=YL 4 MY m Y
Yw—Yqw Yw—Yw

Then the rescaled data W,'s take values in [y.,yy]. Setting 0<y.<{yy<1l, we find the
MILE fo for the density function f; of aX+b based on W,=(aX,+8+aZ,, m=1.....n;
see the Appendix for the computation of ?o' By the change-of-variable, the MILE 7 of
fx is given by

1 » , x—b .

J/’\(x)=[ 2 (5 ) i xelxxy]

0 otherwise,
where xL=(yUY(l)_yLY(n))/(yU_yL) and xU=((1_yL)Y(n)+(yU—1)Y(1)) vy —y).
Secondly we choose y, =0 when X is known to be positive, iie. L=0 and U=, In our
simulation, y;=0.1 and y;=0.9.

4. Numerical Examples
4.1 Unimodal Examples

Figures 1 and 2 contain examples involving normal, exponential, and lognormal distributions.
The random variable X = exp(U/2) has a lognormal distribution if U has a standard normal
distribution. As the error distribution, normal or double exponential distribution was used. The
random variable D=A(E;—E;) has a double exponential distribution if E;and E,are
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independent exponential random variables. As in Fuller (1987) we define the reliability ratio »
by
y= Var(X)
Var(X) + Var(2) *

We report results here for density estimates based on samples of various sample size 2.
The subroutines in Press et al. (1992) were used for the generation of random numbers. The
solid line indicates MILEs and the dotted line is the true density from which we generated
the unobserved X/s. In the figure we also provide kemel density estimates, which is based

on a very small window. It is included only as a descriptor of the observed data Yi,..,Y,.
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Figure 1 Normal and Exponential Density. (a) and (b) are MILEs for normal density with normal error, double
exponential error based on B= {sin2xx, cos2xx), respectively; (c) and (d) are MILEs for exponential density
with normal error, double exponential error based on B= {sin2xx, cos2xr, x,x%), respectively. For each case,
n=200. - Solid = MILE, dotted = Truth.
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Figure 2 Lognormal Density. (a) is for normal error with B— {sin2xx, cos2mx} and (b) and (c) are for
normal error with B= {sin2zx, cos2xx, sindrr, cos4dnx}, respectively; (d) is for double exponential error
with B= {sin2zxx, cos2mrx) and (e) and (f) are double exponential error with

B= {sin2mx, cos2xx, sindxx, cosdmx}, respectively. Sample size: (a) 200, (b) 400, (c) 600, (d) 200, (e) 400,
(f) 600. - Solid = MILE, dotted = Truth.
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Suppose that X has a density Mu,6®) and the noise Z has a density MO0,1). Then the
maximum likelihood estimates of x and o’are given by "= n‘ng.., and

o= n'lg( Y, — 7)°—1. This model was fitted by the kernel method of Liu and Taylor

(1989) and the spline method of Koo and Park (1996); see Figure 1. We feel that our MILEs
performed better than the estimates in Liu and Taylor (1989); the amount of smoothing near
the mode of the density and the amount of smoothing in the tails seem to be correct. Our
MILEs appear to be comparable with the B-spline fit. We also present in Figure 1(b) the
result in which the noise distribution is double exponential with the unit variance. Figure 1(c)
and 1(d) show MILEs when the target distribution is exponential. It is based on data of size
7n=200 and »=0.5. Since the logarithm of exponential density takes different values of
derivative at tails, we have included linear and quadratic terms. One can find unbiased
.estimators of linear and quadratic functions as in trigonometric functions; for example,

;Y,,.—EZ has the same expectation as n'ng,,..

Figures 1(c) and 2(d) show that MILEs give reasonable fits for this case.

In the case with lognormal X having normal or double exponential noise, we generated
data of size =200, »=400 and »=600 with »=0.7. As the sample size increases, MILEs
perform better. One may want to compare Figure 2 with B-spline estimates in Koo and Park
(1996); the performance looks similar. An advantage of MILE over the EM-algorithm of Koo
and Park (1996) is the speed of computation; the whole computing time for an MILE is
approximately the same as one M-step of the EM-algorithm. Comparing it with the result in
Liu and Taylor (1989) for chi-squared density, we may conclude that the tail behavior of
MILEs seems to be better than the kernel-type estimator of Liu and Taylor (1989).

4.2 Bimodal Examples

To investigate how MILEs behave if the true density is of a more complex nature, for
example a bimodal density, we have generated X;'s from a density of the form

£i(x)=0.7M2x;0.5,0.5% +0.3Mx;2,0.13%
and the density
£:(0) =0.5N(x; — (2/3) %,1/3) +0.5NCx; (2/3) 2, 1/3).

In the case of f;, both error distribution were used r=0.7. For the second case, normal
measurement error with variance 1/3 was considered so that fy is unimodal. The bimodal
density f, was used in Stefanski and Carroll (1990).

Figure 3 shows MILEs for samples of size »=400 and »=2500 when X has the density
fi, and Figure 4 displays MILEs when the target density is f,. The computations and

figures are organized in the same way as the examples in the previous section.
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Figure 3 Bimodal Density 1. (a), (b) are MILEs for normal error with B= {sin2mx, cos2xx, sindmx, cosdrx}
and B= {sin2mx, cos2mx, sindnx, cos4xx, sinbxr, cosbax); (c) and (d) are MILEs for double exponential error
with B= {sin2mx, cos2nx, sin4xx, cosdax} and B= {sin2zr, cos2xx, sindmx, cosdmx, sinfmzx, cosbxx,
sin8xx, cos8mx}, respectively. Sample size: (a) 400, (b) 2500, (c) 400 and (d) 2500. - Solid = MILE, dotted
= Truth. :

In figure 3 are MILEs for f;. We can observe the effect of error distribution and the size

of random samples in this example. For n=400, MILEs for both error distributions
underestimated the second sharp mode. When #»=2500 and Z is normal, MILE

underestimated the second sharp mode; whereas the second sharp mode was estimated quite
well when 7=2500 and Z was double exponential. This example seems consistent with

existing theory in that the deconvolution problem is more difficult when the error is normal;
see Fan (1991), Koo and Park (1996), and Koo and Chung (1997).
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Figure 4 Bimodal Density 2. (a) and (d) denote MILEs for the Stefanski and Carroll’s bimodal density with
B= {sin2xx, cos2rx, sindxx, cosdmx). The means of 25 repetitions are shown in (b) and (e). Overlap plots

of 25 repetitions are given in (c) and (f).
Solid = MILE, dotted = Truth.

Sample size: 500 for (a), (b) and (c); 2500 for (d), (e) and (f). -
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For the case with f;,, twenty-five repetitions were performed as in Stefanski and Carroll

(1990) and Koo and Park (1996). The sample sizes in Figure 4 are =500 and »= 2500,
where 500 is the smallest » among {500, 1000, 1500, 2000, 2500} for which the bimodal
structure of f, was captured reasonably. Figure 4(a) and (d) show an estimate with sample

size =500, »=2500 respectively, Figure 4(b) and (e) are displayed the mean of the 25
MILEs respectively, and Figure 4(c) and (f) give a good idea of the variability inherent to the
estimators, respectively. In Stefanski and Carroll (1990), some estimates seemed misleading:
several estimates were unimodal and had negative values. However, in our 25 repetitions, we
observed that our MILEs performed better in that every MILE is bimodal and the mean of
MILEs is much more similar to their true density. Again MILEs appear to perform similarly
to the B-spline estimates in Koo and Park (1996).

5. Concluding Remarks

An advantage of computer simulation over analytic study is that attractive and
mathematically unwidely modifications can be studied. We have seen that MILEs perform
reasonably well for a variety of densities. For unimodal densities, the results look impressive
even for small ». When the density is of more complex nature, we need a larger sample
size. The deconvolution problem with normal error is harder than the case with exponential
error.

In order find an MILE, we should determine B,,...,B;. It is worth extending the automatic
way of choosing trigonometric functions of Koo, Lee and Park (1997) to the log-Fourier
deconvolution.
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Appendix
A-1 Lemma 1

Lemma 1 : ECx(t)=Cx(t) and ESx(t)=Sx(t).

Prodf. Since X and Z are independent, ¢{(t)=EFEe™=FEe™Ee?=¢,(t)pAt), or
equivalently
C(t)= Cx(t)CLL)+Sx(t)SAt)
6

SH(t)=Cx(t)SLt)—Sx(t)CAt)
If we solve the equation (6) for Cx(t) and Sx{(t), we have
Cx(t)=(CAICAt)+SK(t)SLt)) /A1)

and,
Sx(t)=(Sy(t)CAt)— CHt)SAt)) [ 18A )%,
where |¢2(2)I>= C4(t) + S¥(¢). Observe that ECy(2)=Cy(¢) and ES,(t)=S,(¢). Hence,
ECx()=[{ ECy()}CAt)+ { ESy(1)}SA )1/ 1822 = Cx(2).
Similarly, we can show ESx(¢)=Syt). This complete the proof of Lemma 1.

A-2 Computation of 7

For the fixed constants a and 5 determined in Section 3, let X*=aX+% and Z =aX.
Then, the density fw of W=X'+2Z"is also given by convolution equation

fkw)= [ £2(w—2) fx(ds .
Based on a random sample W,..., W, from the distribution of W, we compute B, as before;
for example, when B;(x) = cos(27ix) , '
Bi=( Cw(OC A0+ Sw()S (D) (D%, t=2m.
Let @ be the maximizer of /y(#) over =6, where Iy(6) is defined as in (5). Then, 7, is
given by A -;9).

A-3 Numerical implementation

The program for log-Fourier deconvolution is written in C. The algorithm for the C program
is described in the following.
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Log-Fourier Deconvolution :
Choose B=(B,....B)}.
Initialize 8 P« 0.
Compute C( 8 ") and I V).
Iterate for »=1,---,50.
Compute S( ) and Hessian H( 8 ),
Solve H( @ P)p=S(& ) for 5
Find m=min{k : ly( T P+2 749> 1y( T ),k=0,1,...,30).
If fy( 8 )= 1y( 8 ?)<107° , then exit iteration.

- (D

Otherwise, @ "*P— 8

M r+1
End iterate.

Return with & «

+27™ ™.

7 (r+1) i

—

By the change-of-variable, compute the MILE 7 from 7=A-;8).

Acknowledgements

The authors are grateful to a referee for helpful comments and suggestions.



