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Robustness of Bayes Test on Dependent Samplel)
Hyun Sook Oh2)

Abstract

It is well known that the assumption of independence is often not valid for real
data. This phenomenon has been observed empirically by many prominent scientists.
In this article the sensitivity of dependence on Bayes test of a sharp null hypothesis
is considered. The robustness is considered with respect to the significant level and
the prior probability on the null hypothesis.

1. Introduction

The sensitivity of statistical procedures to violations of the independence assumption has
been studied by several authors mainly in classical analysis. Gastwirth and Rubin(1971)
studied the effect of dependence on the level of the one-sample t-test, sign test and Wilcoxon
test. Also, the effect of dependence on robust estimators has been studied by Gastwirth and
Rubin(1975). Serfling(1968) considered the two-sample Wilcoxon test under strongly mixing
processes. Albers(1978) considered the modified t-test which has robustness of validity under
m-dependence. Recently, a study of various statistical methods(mainly, estimation) for data
with long-range dependence has been performed by Beran(1992a, 1992b) etc. In
Lehmann(1986), it is summarized that the level of the well-known t-test is quite sensitive to
the assumption of independence even asymptotically in the problem of testing the mean of a
normal population.

In the present paper, the effect of dependence on Bayes test of a sharp null hypothesis is
considered. Specifically, the data, x7,***,x, is taken from a population which has normal
distribution with mean 6 and variance 6%, Let o ; denote the correlation between X, and X;
for 7#j. It will be shown that the ordinary Bayes test under the assumption of independence

for the unknown mean 6 is asymptotically robust if lim —’1; gp 5 <%0 and not robust if
n—><co [5a2)
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lim 1 ;=0 and lim L Z‘.p i = O(n). Hlustrative examples are also given. The
n—oo N Fj n—o N 7F

robustness is considered with respect to the significant level and with respect to the prior
probability on the null hypothesis.

2. Description of the problem

Let X;,::, X, be normally distributed random variables with mean 6 and variance o2,
We wish to test Hy: 0= 6y vs H,: 0+ 0, for some specified value of &;. Suppose we
assign a prior probability of x; to the null hypothesis Hy, and use a conjugate prior

N(6y,7%) on the alternative. Then the Bayes test is rejecting Hy, if and only if
P(Hylx)< —1, where P(Hjlx) denotes the posterior probability of H), Let po; be the
correlation coefficient of X; and X, for #j If po;=0 for all 7 and ; with ¥ ie, Xs

are independe‘nt, then, since x is a sufficient statistic of 6,
P(Hylx, p;=10) = P(Hylx, pz=0)
f(x| 60) 7o
m(x)
where f(x16,) is the density function of N(6y, 6?/n) and m(x) is the density function

of N(8,, 0 /n+ r?) that is the marginal distribution function of x for the uncorrelated
data. Note that

m(x) = f(x16y) my + m(x),
where

m(x) = [ F(10)£(6) d6,

and g(@) is the likelihood function of N(6,, 7). Thus we have (see Berger(1985))

-1

P(Hylx, 05=0) = (1+ 1—m mg(x))

m f(x|8) 0

_ (1+ 1-m, exp({nr(?c—ﬁo)}z/{Zoz(nrz-i-oz)}))_1
7o V1+ nd/d )

So if the observations are independent each other, the Bayes test is to reject the null

hypothesis whenever (1) <1/2. Besides, it can be verified that the Bayes test is

asymptotically optimal in a classical sense. That is, the level of the above test is
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P, 0,=0((1) <1/2), which goes to zero as #» tends to infinity. This means if we have

enough information of data, Type I error of the Bayes test is small for uncorrelated data. If
the observations are not independent, however, the above test may lose its optimality. In this
paper, the asymptotic robustness of the above test under dependent data is investigated.
Specifically,

P, ot iorsomei (P(Hy 1%, 05=0) < 1/2) = Py, ,((1) <1/2)

is considered with illustrative examples.

3. Main results

Let us begin with an example.
Example 1. Assume that o ;= p > 0 for all 75 j. Then
— e = (n—De.
Since X is distributed as # (90,;‘: (1 + (n—1)p)) under the null hypothesis Hj,

Poovp*g(P(H()I?,p:O) < 1/2) = Poo.P*O((l) s1/2)
_ n X’ ) ’ 1+ nd
B P"“"’*”( 2P+ o (n)) ln( 1—m a’ ))

n X°
= Pdo.P*O( 0.2(1+ (n—l)p) 2 c,t dn)

= P4 = c,+ d,).

where
_ 200+ A (n?) T _ 1+ A/(n) Z
Cn = 1+(n—iz)p In 1—071'0 and &, = 1+(n—nl)p ln(1+ 7:;2 )

We notice that lingo c,=0 and lirxgo d,=0 by the L’Hospital law. Then by the Slutsky
theorem (Bickel & Doksum(1977)),

lim P(d = c,+ dy) 2P(xd=20)
= 1.
Thus the test based on P(H,l|x,0=0) asymptotically derives false conclusion with
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probability 1 given Hy. For the prior probability z;=0.5, Table 1 gives the exact calculation
of Py, oeo(P(Hyl X, 0=0) < 1/2) when o%/# =1/2. It shows that the level of the Bayes

test is not robust in small sample and in large sample. Moreover, the level of the Bayes test
increases as sample size increases, which is quite a noticeable result.
Next theorem provides us a general phenomenon.

Theorem 1. Suppose that hm— Zp,,— =00 and moreover 7 Zp,, = O(n). Then

n—oo N

1@0Pgo'pﬁ*0(P(H0|7(,pi;=0) < 1/2) = 1.

Proof : Since X is distributed as # (6, —o—:“ 1+ ‘}1— %P i),

P ol P(HylX,05=0)<1/2) = Py ,.((1) <1/2)
nX?

= Pa..p,- 0.2(1+ l/ntszu)

= a,+ b,,]

= P, (2 2 a,+b,),

where

2<1+02/(m2))1n and b, _1+_021(11L2)_1n( 1252)

an=
1+—2p,, 1- ”0 1+ngp,,

By the assumption, lim a,= 0. Also, since —’11— ;}_p i = 0(n),
n—oo

lims, = lim In(1+ n/d®

n—>c0 n

L n@+ et
- '1,1_1’130 o(n)/n
= 0.

This completes the proof. []
In the assumption of the above theorem, let us consider the prior, probability of H,, =g, to
obtain the significant level a as # goes to infinity. Suppose
P o (P(Hylx, p 3=0 for all 4,7) <1/2) = e.

Then
a,+ b, = U,

where a, and b, are defined as proof of Theorem 1, and U, denotes the ath quartile of
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Chisquare distribution with 1 degree of freedom. Solving this equation for m; we obtain
1

0 i
L+ V14 ne|d exp| = U 2(1+62/%u2))

which tends to 1 as n—oo, That is, we need larger prior x; to get the significant level

Ty =

@ as 7 goes to infinity. Thus, if 11120—” ;pu- = oo and hm 1 Zp,, = O(n), the test
assuming independence is not asymptotically robust, in fact, it derlves false conclusion with
probability 1 given H,.

Let us consider the other case.

-Theorem 2. If 11_{!30—1’ > p,;:( 0 and p;+ 0 for some ¢ j, then

Poo,pﬁ(P(HoIE, 0 5=0 for all 5,7) < 1/2)

is asymptotically 0 as 7 goes to infinity.

Proof : Notice that Poo'pﬁ(P(H(]I;, p =0 for all 4,/) < 1/2) = Pgo(x% >a,+ b,), where

a, and b, are defined as Theorem 1. Since ’111120 o 1s;,g,,p""<°°’ a,+ b, tends to
infinity as # goes to infinity. Then the proof of the theorem is complete. []

Thus the Type I error by using P(Hylx, 0 5=0 for all 7,7) is asymptotically small if

lim 5 e <o
Let us again consider the prior probability of Hj, & to obtain the significant level a as
n goes to infinity. Suppose
Py o (P(Hylx, p 3=0 for all £,7) <1/2) =

Solving this equation for m,, we obtain

Ty —

.0 i
1+ V1+ n/ exp|— 2(1_’_:2/(;;22))

which tends to 0 as »n—co if lim L Z.p i <0, where U, denotes the ath quartile of

n— 00

Chisquare distribution with 1 degree of freedom. In other words, we need smaller prior 7 to

have the significant level @ as #» increases. Hence we now conclude that if
11m 1 Zp 5 <o0, it is asymptotically robust to use the test assuming independence.

Examples are given below



792 Hyun Sook Oh

Example 2. (Moving-Average Process) Suppose that, for some fixed positive integer m (< »),
Pii-i I 1<[i—jl<m
O i=

0 if [7—7> m.
Then

_iz ;}Pi;’ =2 kg(l— %)Pk-

In addition, —’11 tZ;p i= 2 kg 0, %, Assume that 1+ 2 ; 0> 0. Then by the theorem
above, for given p,+0 for some & Py ,,,(P(H(,I?c, pi=0 for all &) <1/2) is

asymptotically 0 as #» goes to infinity.

Example 3. (First-Order Autoregressive Process) Let us consider the following correlation
matrix:

N A
p2 1 e ) pn——
¢ e 1 et
pn—l pn—2 pn—3 1

where |o| < 1. In this case

—}2 ‘;’Pii': 2 g(l— ‘i%)ﬁ't
which converges to 20/(1—p) < . Thus the condition of Theorem 2 is satisfied. Table 2.
gives the exact calculation of P, p*o(P(HOIT(, 0=0) <1/2) when the prior probability
my=0.5 and o*/c%=1/2.

<Table 1> The level of the Bayes test in Example 1 when the prior probability 7= 0.5
and o%/r?=1/2.

n ;
10 20 30 50 100
0
0.05 0.1376 0.1624 0.1915 0.2451 0.3439
0.1 0.1946 0.2519 0.3007 0.3741 0.4844
0.5 0.4458 0.5471 0.6036 0.6609 0.7453




Robustness of Bayes Test 793

<Table 2> The level of the Bayes test in Example 3 when the prior probability 7p= 0.5
and d?/c?=1/2.

g 10 20 30 50 100
0
0.0 .0.0874 0.0628 0.0514 0.0398 0.0280
0.1 0.1023 0.0761 0.0635 0.0504 0.0366
0.5 0.2675 0.2436 0.2273 0.2064 0.1796
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