Abstract
연속형 변수들의 상관관계와 범주형 변수들의 연관성 측도들을 비교 연구하였다. 이 연구를 위하여 연속형 변수들이며 +1에서 -1까지 완벽한 상관관계를 갖고 있는 2 변량 정규분포를 이용하여 2$\times$2 분할표와 확장하여 일반적인 I$\times$J 분할표를 대신하는 3$\times$3 분할표를 생성하였다. 2 차원 분할표에서 정의된 연관성 측도들을 구하여 논의하였는데 2$\times$2 분할표에서는 교차적비 $\alpha$ 통계량과 교차적비의 함수로 표현되는 Yule [1912]의 Q와 Y의 통계량 그리고 상관계수 R 통계량과 R 통계량의 함수인 P 통계량을 설명하고 생성된 분할표에서 구한 통계량값을 분석하였으며, 3$\times$3 분할표에서는 Pearson의 독립성 검정통계량 $X^2$의 함수로 표현되는 P. T. V 통계량과 Goodman과 Kruskal [1954]의 $\lambda_{C/R}$통계량과 Light와 Margolin [1971]의 $\tau_{R/C}$ 통계량을 설명하고 그 값들을 Pearson의 상관계수와 비교 분석하였다.