References
- Information theory and an extension of the maximum likelihood principle, in Second International Symposium on Information Theory Akaike, H.;B. N. Petrov(ed.);F. Czaki(ed.)
- Tjechnometrics v.16 The relationship between variable selection and data augmentation and a method for prediction Allen, D.M.
- The American Statistician v.46 Explaining the Gibbs Sampler Casella, G.;George, E.I.
- Applied Regression Analysis(2nd ed.) Draper, N.;Smith, H.
- Ann. Statist v.7 Bootstrap methods:Another look at the jackknife Efron, B.
- Journal of the American Statistical Assocation v.85 Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling Gelfand, A.E.;Hills, S.E.;Racine-Poon, A.;Smith, A.F.M.
- Journal of the American Statistical Association v.85 Sampling-Based Approaches to Calculating Marginal Densities Gelfend, A.E.;Smith, A.F.M.
- Journal of the American Statistical Association v.88 Variable Selection Via Gibbs Sampling George, E.I.;McCulloch, R.E.
- IEEE Transactions on Pattern and Machine Intelligence v.6 Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images Geman, S.;Geman, D.
- Biometrika v.57 Monte Carlo Sampling Methods Using Markow Chains and Their Applications Hastings, W.K.
-
Some comments on
$C_{p1}$ Technometrics v.15 Mallows, C.L.