Bayesian Estimation Procedure in Multiprocess Discount Generalized Model

  • Joong Kweon Sohn (Department of Statistics, Kyungpook National University, Daegu 702-701, Korea) ;
  • Sang Gil Kang (Department of Statistics, Kyungpook National University, Daegu 702-701, Korea) ;
  • Joo Yong Shim (Department of Statistics, Kyungpook National University, Daegu 702-701, Korea)
  • Published : 1997.04.01

Abstract

The multiprocess dynamic model provides a good framework for the modeling and analysis of the time series that contains outliers and is subject to abrupt changes in pattern. In this paper we consider the multiprocess discount generalized model with parameters having a dependent non-linear structure. This model has nice properties such as insensitivity to outliers and quick reaction to abrupt change of pattern in parameters.

Keywords

References

  1. Bayesian Statistics 2 Normal Discount Bayesian Models Ameen, J. R. M.;Harrison, P. J.;J. M. Bernardo(ed.);M. H. DeGroot(ed.);D. V. Lindley(ed.);A. F. M. Smith(ed.)
  2. The American Statistician v.40 Harrison-Stevens Forecasting and the Multiprocess Dynamic Model Bolstad, W. M.
  3. Communications in Statistics: Theory and Method v.17 Estimation in the Multiprocess Dynamic Generalized Linear Model Bolstad, W. M.
  4. Journal of the American Statistical Association v.90 The Multiprocess Dynamic Poisson Model Bolstad, W. M.
  5. Journal of the American Statistical Association v.67 Linear Dynamic Recursive Estimation from the Viewpoint of Regression Analysis Duncan, B.;Horn, S. D.
  6. Operations Research Quarterly v.22 A Bayesian Approach to Short-term forecasting Harrison, P. J.;Stevens, C. F.
  7. Journal of the Royal Statistical Society B v.38 Bayesian Forecasting Harrison, P. J.;Stevens, C. F.
  8. IEEE Transactions on Automatic Control A Bayesian Approach to Problems in Stochastic Estimation and Control Ho, Y. C.;Lee, R. C. K.
  9. Journal of Basic Engineering A New Approach to Linear Filtering and Prediction Problems Kalman, R. E.
  10. Journal of the American Statistical Association v.82 Non-Gaussian State-Space Modeling of Nonstationary Time Series Kitagawa, W.
  11. IEEE Transactions on Automatic Control v.22 Robust Bayesian Estimation for the Linear Model and Robustifying the Kalman Filter Masreliez, C. J.;Martin, R. D.
  12. Journal of Forecasting v.12 Generalized Exponential Growth Models - A Bayesian Approach Migon, H. S.;Gamerman, D.
  13. Biometrics v.39 An Application of Multiprocess Kalman Filter to Renal Transplant Data Smith, A. F. M.;West, M.
  14. The Statistician v.32 Monitoring Kidney Transplant Patients Smith, A. F. M.;West, M.;Gordon, K.;Knapp, M.;Trimble, I. C.
  15. The Korean Communication in Statistics v.3 Bayesian Estimation Procedure in Multiprocess Non-Linear Dynamic Normal Model Sohn;Kang
  16. Journal of the Royal Statistical Society B v.43 Robust Sequential Approximate Bayesian Estimation West, M.
  17. Journal of the Royal Statistical Society B v.48 Bayesian Model Monitoring West, M.
  18. Journal of the American Statistical Association v.81 Monitoring and Adaptation in Bayesian Forecasting Models West, M.;Harrison, P. J.
  19. Journal of the American Statistical Association v.80 Dynamic Generalized Linear Models and Bayesian Forecasting West, M.;Harrison, P. J.;Migon, H. S.
  20. Applied Statistics v.43 A Dynamic Changepoint Model for Detecting the Onset of Growth in Bacteriological Infections Whittaker, J.;Fruhwirth-Schnatter, S.