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Choosing Optimal Design Points in Two Dimensional Space
using Voronoi Tessellation

Dongryeon Parkl)

Abstract

In this paper, the problem for choosing design points in the two dimensional case is
considered. In the one dimensional case, given the design density function, we can
choose design points using the quantile function. However, in the two dimensional
case, there is no clear definition of the percentile. Therefore, the idea of choosing
design points in the univariate case can not be applied directly to the two dimensional
case. We convert this problem into an optimization problem using the Voronoi
diagram.

1. Introduction

A sensitivity experiment is characterized by a response surface that relates the stimulus
level applied to an experimental subject to the probability of response. The outcome of
experiment is assumed dichotomous, response or nonresponse. The observed reaction Y ; of

the ith subject at stimulus level x; ,7=1,...,7n is encoded by Y ;=0 (if nonresponse) or
Y ;=1 (if response) where x;is a kX1 vector of independent variables. The probability of
response is related to stimulus level x by a quantal response surface #(x), ie,
p(x) = Pr(Y;=1) ,i=1,..,n (L
The specification of the stimulus level x; forms the design of the experiment. In this

paper, we consider only the two dimensional case in which the design point x; lie in R".

As an estimator for p(x), we define the kernel estimator
Aoy =L 3 x—s ,
An=-k 3 [ K25 )ds ¥, @)

where b is a sequence of a positive bandwidths depending on 7 such that
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b—0, nb®—> o as n— oo
and where K is a kernel function, and where A ; is a partition of £ such that x;,€A;
and U, A; = £ and A, A; = @, forall i#+; where x,,.., X, are the design

points. Assume 2 = [0,1]1% In additon we assume K(u) is continucus and has a

compact support.
In the one dimensional case, Muller and Schmitt (1988) assumed that there is a strictly

positive design density Ax) which determines the design points uniquely, and they derived
the optimal design density f (x) which minimizes the asymptotic IMSE (Integrated MSE).

Then the optimal design points x7, ..., % » are chosen according to
x; .
Ji e = =L @)

The quantile function uniquely determines the design points in one dimension.

In the two dimensional case, however, there is no clear definition of the percentile, so the
idea of choosing design points in univariate case can not be applied directly to the two
dimensional case. Therefore, even though Park (1995) derived the optimal design density

F*( x) which minimizes the asymptotic IMSE of our estimator #( x) of (2), there is no

unique way we can choose the optimal design points %, , -, X, using f'(%).
In this paper, we will consider the problem for choosing design points in the two
dimensional case using the design density.

2. Choosing Optimal Design Points

Suppose the optimal design density f'( x) is given and we want to choose optimal design

points xl*, e x,,* from f'( x). Then we wish to choose optimal design points
xl',---, x,,* such that
[ f(nax = L 2" ea @
Therefore,
4A; = ﬁ, for some a; € A; 5)

where AA; is the area of A;, so dA; = O(n™Y).
However there is no unique way to select optimal design points such that (4) is satisfied,

so we need to restrict A, in a reasonable way.
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Suppose we set
A, = { x| llxa— x; I <llx— x;"l for je I, but j*i} (6
where I, = {1,..,n} and |-l is the Euclidean distance. Then A; is the Voronoi

polygon associated with x,; and the set given by A = { Ay, .-,A, } is the Voronoi

diagram generated by the optimal design points.

So we wish to choose the optimal design points by constructing the Voronoi diagram such
that (4) is satisfied for all 7. However, there is no obvious way to do this. Therefore we
have to resort to an approximate approach. We convert our problem into an optimization
problem in the following way :

1. Define the objective function F

Flxi,ox) = 2 [, Il il £(x) dx @)

where A, is the Voronoi polygon associated with x; and|| - || is the
Euclidean distance.

9. Choose { %, .-, %X, ) such that { x, ,, X, )} minimizes F.

The above optimization problem is a geographical optimization problem and it has been
considered by Iri et al (1984). To be specific, let us consider = “facilities” placed,
respectively, at points X;,--, X, of the two dimensional Euclidean space Rz. The
territories of these facilities are the Voronoi regions A ; defined by (6). We consider
furthermore a distribution of "inhabitants” represented by f"( x), to be called the population
density function. We assume that an individual inhabitant living in region A ; will use the ith
facility and the cost for user to gain access to facility is a function of the Euclidean distance
of x and the location x; of the nearest facility.

In this optimization problem, we want to determine the optimum locations of a given
number of facilities for a given population distribution, and this is the problem of minimizing
the objective function F in (7) which is the total cost connected with the serviceability of the
facilities.  Therefore to minimize the total cost, we will put more facilities where the
population is dense.

Thus, if we choose { % , -, x, )} such that it minimizes the objective function F of
(7), then we can expect the area of A ; which is the Voronoi polygon associated with x,-'

is inversely proportional to f ( x).
Note that from (4) and (5), 4A; is also inversely proportional to f *( x). Therefore we
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claim that the optimization problem is approximately equivalent to our original problem.

3. Optimal Design Algorithm

In this section, we consider how to implement the optimal design idea of the previous
section. First of all, in terms of the objective function F, we can formally state the optimal
design algorithm.

Optimal Design Algorithm

Given an optimal design density function f7( x), choose the optimal design

- * * - - . .
points X, ,--, X, such that it minimizes

gl L= 202 f(x) dx ®)

Since each x; has 2 coordinates (x,,x ), the problem is essentially minimization with

respect to 2# variables. Let X be the 2 z#~dimensional unknown vector whose components
are the components of # vectors Xi,.-, X,
T T
X = [ x 1 s "ty X n ]

Our computational procedure for above problem is written algorithmically as follows.

) 2n

Step 1. Choose an arbitrary X € R, and set k& = (0 (denoted by
ke 0)

Step 2. Compute the gradient, VF( X (k)), then determine the direction

vector d® at the point X ®

) ; ) E
Step 3. Determine the step size a ® 4t the point X &
Step 4. Get the new approximation by

(& B B
X +1) X() + a(k) d()
Step 5. Repeat Step 2 - 4 until some stopping criterion is satisfied.

To compute the gradient VF( X (k)), we need the partial derivatives of F. The partial

derivatives of F in (7) with respect to Xx; consists of two components, one comming from
the derivatives of the integrand function and the other from the variation of the region A ;

itself as well as of the region A ;'s adjacent to A ; due to the variation of x; . The first

component takes the form:
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J, 2z =2 )f (2)dx

and the second component is the sum of the terms due to the variation of A; and the
variation of adjacent region A; . However, the terms constituting the second component

cancel themselves, so that only the first component remain. Therefore, the first derivative is

given by
oF YT _ o
g fAiz(xii x)f(x)dx, j=1,2, i=1,...,n
where x = (x1,x,) and x5 j=1,2, is the element of x so x,-T = (x4,x2). The

detailed derivation is given by Iri et al (1984) and Okabe (1992).

Using the steepest descent method with this derivative, we can obtain a local optimal
solution. Alternatively, we may use the Newton method to gain faster convergence. For this
use, we need the second partial derivatives of F. The detailed derivation of the second partial

derivatives of F is given by Iri et al. (1984). Then the direction vector is given by

d(/e)’ = —[v2F X(k))] _IVF( X(k)),

where v iF( X (k)) is the Hessian matrix of F{ X(k)).

Newton method, the calculation of the Hessian matrix becomes time consuming for a large
number of design points when the design density is not uniform. To shorten computing
times, Iri et al. (1984) recommend, on the basis of their numerical experiment, to use the

Although we may use the

quasi-Newton method with the diagonal matrix H, whose diagonal elements are given by

2
% = fA'Zf'(x)dx, i=1,2
i :
where x,~T = (x5,%p) and x = (x,,%7) .

The line search algorithm is based on the Goldstein’s rule to use a satisfying
py @ FICH v X(k))sF( xW®y d(k))_F( X(k))sﬂla\ FICH vE( X(k))

with predetermined constants g, and g, (0 < gy < gy < 1). We used g, = 107°
and ¢4 = 0.5, which are recommended values in Suzuki et al. (1991). The stopping rule of
the repetition is given by

max ;; lx V-2 P < 10 5.

The algorithm for Voronoi construction which we used is based on the grid method. We
used 20%20 grid points throughout our numerical exercises, and each grid point is the center

of pixel sized -zlo* X 2—10 All we have to do to construct the Voronoi diagram is for each

generator which is design point, to identify the pixels which belong to the generator.
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4. Examples

In this section, we choose design points using the optimal design algorithm of the previous
section for several design densities. As a design density, we used the bivariate normal
density with different parameters :

Model 1 (f1(x)) : p,=p,=.5, 0,=0,=.05, p=.5
Model 2 (fz( x)) : /11=/12=.5, 0'1=0'2=.1, p=.5
Model 3 (f3( x)) : p1=p,=.5 0,=0,=.15, p=.5

In Figure 1-6, we have plotted the design density function and the optimal configuration of
n=25 for each model in the unit square. We can see that the selected design points for
each model represent the design density very well. Therefore, by the optimal design algorithm
of (B), we can solve the problem for choosing the design points in the two dimensional case.

5. Conclusion

In one dimensional case, if we want to determine the design point from the design density
function, we can use the quantile function which uniquely determines the design points.
However, in two dimensional case, since there is no clear definition of the percentile, the idea
of choosing design points in univariate case can not be applied directly. In this paper, we
provide one possible solution for this problem. Even though our method is not exact
approach, we can verify our algorithm works very well through our numerical exercises.
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Design Density of f;( x)

Figure 1:
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Figure 2' Location of Design Points for f1( x)



136 Dongryeon Park

Figure 3: Design Density of f3( x)
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Figure 4: Location of Design Points for f2( x)
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Figure 5: Design Density of f3( x)
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Figure 6: Location of Design Points for f3( x)
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