Nonnegative Garrote 에서의 영향관측값 검출

  • 안병진 ((143-701) 서울 광진구 모진동 93-1, 건국대학교 응용통계학과)
  • Published : 1997.04.01

Abstract

Breiman(1995)에 의하여 제안된 nonnegative garrote을 Mallows $C_p$의 확장된 개념인 $C_H$의 관점에서 최소자승법, 능형회귀, 축소추정량, 변수선택등의 방법과 비교하였다. 또한 $C_H$를 각 관측값이 기여한 양으로 분해하여 nonnegative garrote의 경우 영향관측값을 검출할 수 있는 한가지 방법을 다루었다.

Keywords

References

  1. Technometrics v.37 Better subset regression using the nonnegative garrote Breiman, L.
  2. Journal of the American Statistical Association v.87 The little boostrap and other methods for dimensionality selection in regression:The X-fixed prediction error Breiman, L.
  3. Journal of the American Statistical Association v.72 A simulation study of alternatives to ordinary least square Dempster, A.P.;Schatzoff, M.;Wermuth, N.
  4. Technometrics v.12 Ridge regresion: biased estimation for nonorthogonal problems Hoerl, A.E.;Kennard, R.W.
  5. Journal of the American Statistical Association v.88 Assessing influence in variable seletion problems Leger, C.;Altman, N.
  6. Communications in statistics v.13 Robust ridge regression methods for predicting U.S. coal mining fatalities Lawrence, K.D.;Marsh, L.C.
  7. Communications in Statistics v.2 The optimal set of principal component restrictions on a least squares regression Lott, W.F.
  8. Technometrics v.15 Some comments on $C_p$ Mallows, C. L.
  9. Multiple regression. Contribution to probability and ststistics. Essays in honor of Harold Hotelling Stein, C. M.;I.(ed.)
  10. Technometrics v.30 Influence measures in ridge regression Walker, E.;Birch, J. B.
  11. Technometrics v.23 A statistic for allocating $C_p$ to individual cases Weisberg, S.