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Abstract

The new Laplace autoregressive model of order 2 - NLAR(2) stud-
ied by Dewald and Lewis (1985) is extended to the p-th order model -
NLAR(p). A necessary and sufficient condition for the existence of an
innovation sequence and a stationary ergodic NLAR(p) model is ob-
tained. It is shown that the distribution of the innovation sequence is
given by the probabilistic mixture of independent Laplace distributions
and a degenrate distribution.
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1. INTRODUCTION

It is usually assumed in time series analysis that the marginal distribution
of {X,} is Gaussian. However, Gaussian distribution is not always approprite.
In recent years, a number of non-Gaussian time series models have been
developed. The need for such models arises from the fact that the exponential,
Gamma, and Laplace distribution are more appropriate for modelling highly
skewed and long tailed series than Gaussian distribution.

Lawrance and Lewis(1981, 1985) suggested a new exponential autoregres-
sive time series model - NEAR(1) and NEAR(2) for modelling positive and
highly skewed data, e.g., wind speed, service time in a queue, and daily flows
of a river. Chan(1988) extended the NEAR(2) model to the p-th order NEAR
model and obtained the necessary and sufficient condition for the existence
of the stationary ergodic NEAR(p) model.

The important property of the NEAR model is simple and analytically
tractable. But this simplicity is bought at the price of the autocorrelations
being non-negative.

Dewald and Lewis(1985) proposed a new Laplace autoregresive time series
model - NLAR(2) for modelling large kurtosis and long tailed data, e.g.,
position error, response rate, and speech waves.

The NLAR(2) model provides great flexibility in the sense of the broad
range of autocorrelations and partially time reversible of third order moments.

In this paper, the NLAR(2) model is generalized to the NLAR(p) model.
The detailed explanation of the NLAR(2) model and its extension are dis-
cussed in Section 2. Necessary and sufficient condition for the existence of a
stationary ergodic NLAR(p) model and an innovation sequence are derived
in Section 3.

2. PRELIMINARIES
The NLAR(2) model takes the form

B1Xn-1 w.p. o
X, =e€,+{ B2X,_2 w.p a ,n=123,--- (2.1)

0 w.p. ayg=1—a; —ay

where the distribution of the i.i.d. innovation sequence {e,} is chosen so
that the marginal distribution of the stationary sequence {X,} is standard
Laplace, i.e.,
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flz) = —;—ea:p(-—|x[), —00 < 1 < 0. (2.2)

Dewald and Lewis(1985) showed that there exists a unique strictly station-
ary and ergodic solution to the equation (2.1) if and only if &, 32 + 82 < 1.
They also showed that if 0 < «; < 1,0 < |3;] < 1,1 =1,2, a; + a3 < 1, then
e, is given by

L, w.p. 1—py—p3
€, = |b2|Ln w.p. P2 (23)
|bs|L, w.p. ps3

where {L, } is i.i.d. standard Laplace variable and is independent of {X,}.
The values of by, b3, p2, and p; are given by

— 01512(6% - »33) + 012522(17% - 512)

07 - )1 - 1) 24

N alﬁf(lﬁ(é f?i;(;xz_ﬂiél)ﬁ - ) (2.5)
1>b§=%{s+(52~4r)§'}>b§=%{s—(s2—4r)%}>o (2.6)
s=(1- a8 + (1 - )8 (2.7)

r=(1-o —a)B8; (2.8)

The NLAR(p) model can be constructed analogously to the equation (2.1)
and hence takes the form

( 0 wp. ogg=1l—-a;~--—gq
BXXH—I w.p.
X, =e,+{ B2Xu-2 wp a ,yn=1,23,--- (2.9)

L /Ban—p w.p. a,

where the distribution of the i.i.d. innovation sequence {e,} is chosen so
that the marginal distribution of the stationary sequence {X,} is standard
Laplace.
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The equation (2.9) is exactly same as that of the NEAR(p) model. The
only difference is that the marginal distribution of the stationary sequence
{X.,} of NEAR(p) model is exponential with mean one. Hence the existence
condition for the stationary ergodic NLAR(p) model can be obtained by using
the existence condition for the stationary ergodic NEAR(p) model.

Let Z denote the set of integers and let {J(n),n € Z} and {e,,n € Z} be
two sequences of i.i.d. random variables where {J(n)} and {e, } are assumed
to be independent. It is further assumed that J(n) is discrete random variable
distributed as follows;

(0 w.p. apg=1l-a;—- -q,
1 wp. a
Jn)y=¢{ 2 wp a (2.10)

p wp a,

\

Let 3,(,) be a discrete random variable taking constants 3;, 3;,---, 3, in
J(n), ie.,

4

0 wp. ap=1—-0a;— —aq,
81 w.p. o
/B.l(n) - 4 /82 w'p' Qg (2.11)

Lﬂ,, w.p. a,

Using these notations, we can express the equation (2.9) as a recursive
form

X, = B.l(n)Xn-—J(n) +e,, n€EZ (212)

where J(n) is independent of X, _;, X, _q,-- .
Now, we state a theorem that the equation (2.9) admits a stationary
ergodic solution.

Theorem 1. If either of the conditions

or
(2) P(lﬂl(n)l > 0) = 1) Ele'nl < o0, and Elﬂ](n)' <1
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ot

holds, then the equation (2.9) admits a strictly stationary ergodic solution
X,.

Proof . Proof closely follows the one in Chan(1988) except that |8,(,)| is
substituted for 3,(,).

3. EXISTENCE CONDITION OF THE STATIONARY
ERGODIC NLAR(p) MODEL

We state two lemmas before we derive the main result of this paper.

Lemma 1. Let [3,],|83:], - -,|8,] be positive distinct numbers in descend-
ing order and let ag,ay,---,a, be positive probabilities less than one with
>P_oai; = 1. Define ¢(t) for real value of ¢ as follows.

a(®) = aoh(®) + 3o, [11 - 247) (3.1)
= ;¢J
where h(t) = [T/_,(1 — B%¢?).
Then, for some by, by, - - -, b, such that |8;] > |b;| > |Bi+1],1 =1,2,---,p—1
and |8,| > |b,|, we have

P

q(t) = (1 - b7¢?) (3.2)

i=1

Proof. For the case of p = 1, the equation (3.1) becomes

g(t) = 1 — ooB%t?

Taking b? = B2 gives |51] > |b1] > 0.
For the case of p > 1, the equation (3.1) becomes

q<|—;—|> (ﬂz)pll'[(ﬂ2 8y, i=1,2--,p—1 (3.3)

i

Since |B;|’s are positive distinct number in descending order, the sign of

q (I—ﬂ—) is (—1)*~! and the sign of ¢ (IB |) q ( ﬂl+l‘) is negative. This implies

) Therefore, there exists |b;]

that ¢(t) changes sign in an interval (
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such that ¢ ( ! ) = 0 in the interval (L = ) Hence, we have |3;| > [b;| >

m 13,1 14, 1]
1Biv1l, i =1,2,---,p— 1L
Similarly, the sign of q( 1 ) is (=1)*~! and the sign of q(t) is (—1)" for

18]

t — =+oo. This implies that ¢(¢t) changes sign in (1 oo) for 3, > 0, and

,Hp ’

in (—oo 1 ) for B8, < 0. Therefore, there exsits b, such that g (%) =0 in

"8,
(i,oo) for 8, > 0, and in (—oo, %) for 3, < 0. Hence, we have |8,| > |b,| >
The proof is completed from the fact that g(t) is the p-th order of poly-
nomial in #? and its roots are -, -} 1

o Joa " bl

Lemma 2. Assume that the conditions of the Lemma 1 hold and further
assume that oy = 0. Then, for some b;,b,,---,b,_; such that |3,| > |b;] >
|ﬂi+l|, 1= 172a RS Zae ]-a we have

I)"l

() = [T(L - 826 (3.4)

Proof. Proof is omitted since it is similar as that of the Lemma 1.

Now we state the main theorem of this paper.

Theorm 2. There exist an innovation sequense {e, } such that the equation
(2.9) admits a stationary ergodic solution X, with marginal standard Laplace
distribution if and only if

Proof. It is clear from the Theorm 1 that necessary condition holds.

To prove sufficiency, let px (t) and ¢, (¢) be the moment generating func-
tions of X, and e, respectively.

Assume that X, is stationary and distributed marginal standard Lalpace.

Then, we have that for |t] < V}_‘l’ i=1,2,---,p,

ex (t) = o (t){ao + a19x (Bit) + aspx (Bat) + -+ - + a,0x (B,t)} (3.6)

and

-1
ag (o2} a,
RN 22U (g
(P(,() {(1 )(a0+1—,312t2 +1_622t2 + +1—,33t2} (3 7)
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Now, we will find the condition for the right hand side of the equation
(3.7) to be a valid moment generating function.

If 8,0,y =0, then ¢, (t) is trivially the moment generating function of the
standard Laplace distribution.

For the case of |8,»,)| # 0, we can assume without loss of generality
that |31], 82|, --,|3,| are positive distinct numbers in descending order and
oy, -+, a, are positive.

Case1l:0<ag< 1.
It is seen from the Lemma 2 that ¢, (t) is given by

(1 - BHe?)
(1—2) T2, (1 — b2t2)

By partial fraction expansion, the right hand side of the equation (3.8)
can be expressed as

p.(t) =

(3.8)

a as a, api1
1—b%t2+1-b§t2 +1—b§t2 1-—¢2

(3.9)

where the coefficients a,, k = 1,2,...,p,p + 1 are given by

! (b' H
,,z_rfn' s k=120, 15 AL b A
. (3.10)

ayp = ,2
H., (2 H) k=1,2--,p, |8]=1

s

Let F(z) denote the distribution function of e,. Inverting (3.9), we then
have

F(z) = /_Ioo {; 2—?{—:] erp (—Il—;|—|> + al;Ie:r.p(-—-M)} dt (3.12)

In order that ¢ (¢) is a moment generating function of some random vari-
able, F(z) should be non-decreasing, continuous from right, and unity at
infinity.
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It is straigtforward that F(z) attains unity at infinity, i.e.,

F(oo) =9 (0) =1

Continuity from right is clear. The non-decreasing property of F(z) is
equivalent to the non-negativity of the integrand which is satisfied from the
eqution (3.10) and (3.11) if 0 < |81, (B8], -+, 13, < 1.

Case 2 : a9 =0.

For the case of p = 1, we have

2

1-—
po(t) =B+ T (3.13)

Inverting the equation (3.13), we have

gy ea:p(——|t|)} dt (3.14)

CEVREDES

where g(t) is degerate at zero.

It is easily seen that the equation (3.14) is a distribution function if and
only if |3;] < 1.

For the case of p > 1, ¢q(t) takes the form of the equation (3.4).

By partial fraction, we have

ay Qa3 a,1 apt1
At) = X 3.15
e =ctipmt i T et (3.15)
where ¢ = [T, 82/ IT’-; b? and a;’s are given in the equation (3.10) and

(3.11) respectlvely except that the subscripts run from 1 to p — 1.
Inverting (3.15), we have

F(z) = c+/ { 2|b ! p( |blt||) + ey (—Itl)} dt (3.16)

Similarly as in the case 1, it can be shown that F'(z) is a proper distribu-
tion of e, if and only if 0 < [34], 82|, -+, 18,] £ 1.
This completes the proof of the Theorem 2.

Remark 1. For the case of p = 2, the existence condition of the above
theorem reduces that in Dewald and Lewis(1985).



Existence condition of NLAR(p) model 529

The distribution of the innovation seqence {e, } can be obtained from the
proof of the Teorem 2 and is summarized in the following corollary.

Corollary 1. Assume that the condition in the Teorem 2 holds and further
assume that «,’s are positive and 0 < |3;| < 1,7 = 1,2,---,p. Then the
distribution of the innovation seqence {e, } is given by a probabilistic mixture
of independent Laplace distribution. If oy = 0, then one of the mixture is
degenerate at zero.

Proof. This follows from the equation (3.12) and (3.14).

Remark 2. It can be shown that the distribution of {e,} for the case of
p = 2 reduces to the equation (2.3).

4. CONCLUDING REMARKS

In this paper, the NLAR(2) model developed for the variables with large
kurtosis and long tailed distribution is extended to the NLAR(p) model. A
necessary and sufficient condition for the existence of an innovation sequence
{e.} and a stationary ergodic NLAR(p) model {X,} is derived. It is shown
that the distribution of the innovation sequence {e,} is given by a proba-
bilistic mixture of independent Laplace distributions if 0 < ay < 1 and a
probabilistic mixture of independent Laplace distributions and a degenrate
distribution if oy = 0.

Estimation of parameters a; and 8;, + = 1,2,...,p is of importance to
predict the NLAR(p) model and will be treated elsewhere.
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