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Abstract

The two-sample t-test is not expected to be optimal when the two
samples are not drawn from normal populations. According to Box
and Cox (1964), the transformation is estimated to enhance the nor-
mality of the transformed data. We investigate the asymptotic relative
efficiency of the ordinary t-test versus t-test applied transformation in-
troduced by Yeo and Johnson (1997) under Pitman local alternatives.
The theoretical and simulation studies show that two-sample ¢-test
using transformed data gives higher power than ordinary t-test for
location-shift models.
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1. INTRODUCTION

Many parametric techniques in statistics are based on the assumption
that the underlying distribution of the data is normal. The validity of the
results obtained depends, sometimes critically, on the assumed conditions
being satisfied, at least approximately. However, there are several situations
where the normal assumptions are seriously violated and the techniques are
sensitive to departures from normality. In these cases, a transformation of
the data may permit the valid use of the powerful normal theory.

Chen and Loh (1992) discussed asymptotic power properties of the Box-
Cox (1964) transformed t-test. They obtained the Pitman asymptotic rela-
tive efficiency and show that the Box-Cox transformed two-sample t-test is
asymptotically more powerful than the ordinary t-test under location-shift
alternatives. The Box-Cox transformations are, however, defined only for
positive variables. Although a shift parameter can be introduced to handle
the situations where the variables are negative but bounded below, the stan-
dard asymptotic results of maximum likelihood theory may not apply since
the range of distribution is determined by the unknown shift parameter (see
Atkinson (1985)). Chen (1995) extended this work to a general family of
transformations h(\,z), A € ©, where h is a specific function. Here © is a
subset of the real line. It turns out, however, that the extended transforma-
tions mentioned in Chen (1995) are not appropriate for reducing skewness
(see Yeo and Johnson (1997)).

In this article, we determine the asymptotic relative efficiency of the two
sample t-test under location alternatives, scale alternatives, or location and
scale alternatives. We compare the t-test applied to the original data with
the t-test using data transformed according to the transformation

((x +1)*=1)/x for X >0, A #0,

X0 = log(X +1) for X >0, =0, (1.1)
—((=X +1)** = 1)/(2- 1) for X <0,1#2, '
—log(—X +1) for X <0, X =2,

which is introduced by Yeo and Johnson (1997). According to the definition
of relative skewness introduced by van Zwet (1964), the transformation (1.1)
is appropriate to improve the symmetry of skewed distributions. It has prop-
erties similar to those of the Box-Cox transformation for positive variables.
In particular, there is a convexity (or concavity) property in parameters. We
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refer the reader to Yeo and Johnson (1997) for the details of transformation
(1.1).

2. LOCATION AND SCALE SHIFT MODELS

Let X,,...,X,, be independent and distributed as X and let X, 41, ...,
X, +n, be independent and also distributed as X. Assume that X;,...,X,,

and X, +1,--., Xu,+n, are also independent. Let n = n; +n, be the combined
sample size with ny/n — ¢ € (0,1) as n;,ny; — oo. We consider a general
location and scale alternative, where Y;,...,Y,, are defined by

Yi=(1+mn) (X,,,H.i +u7'"), i=1,...,nq,

withr > 0,u >0,u+r > 0and 7, = 7/+/n. To simplify the notation, we
suppress subscripts on the random variables and write Y = (147,)" (X +u7'").
We consider testing the hypotheses of equal populations

Hy: =0 versus H,;: 7>0.

The alternative hypothesis H; relates X and Y according to a location-
scale-shift model in original scale where 7, enters both location and scale
parameters. The location-shift and scale-shift models of H, correspond to
the cases (r = 0,u = 1) and (r = 1,u = 0), respectively.

We assume that, for some \, the transformed variables X 1('\) ve, X and

n]

Y, ..., Y) can be treated as normally, as closely as possible, distributed

? Ty

with same variances. Let X = 31, x%/n, v = > Y"Y/n,, and let

1=

S2()\) be the pooled sample variance for the two transformed samples,

3

S2(A) = n—i—g {Z (X~ XOY 4 3 (v - }_’(”)2} . m=n+n
i=1 i=1

Then, the t-test statistic, based on the transformed samples, is

t,,()\) _ ning

(YW - xN)/s,(0). (2.1)

n

Under the assumptions above, we obtain the maximum likelihood estima-
tor (M.L.E.) of the transformation parameter, A, by minimizing the function

P,(\) = S‘IZL(A)/J2A (2.2)
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where

log(J) =

S|

ny
( (I(X.-EO) log(X,- + 1) = I(x,<0) log(_Xi + 1))
1

i

~

7

+ (I(y;zm log(Y; + 1) — Iy, <o) log(-Y; + 1))) :
1

i

Suppose that the expected values E [I(_RO)(—X)Z(Z‘*)] and £ [I(X ZO)X”]
are finite. Then, for fixed A, the strong law of large numbers ensures that
under Hy,

P,(A) =5 Py(A) = a*(\) exp(—2An) (2.3)

where o2()\) = var[X(*)] andn = E[I(Xzo) log(X + 1) — Iix <o) log(—X + 1)]

3. ASYMPTOTIC RESULTS AND A.R.E.

Throughout this paper, we assume that the M.L.E. is calculated on a
compact interval A = [a,b] with —00 < a < b < oo and the expected

values E[I(x<0)(—X)2(2“") (log(—X + 1))2] and E[I(ng)XQ" (log(X + 1))2]
are finite. When a = 2, E[I(x<0)(—X)2(2"") (log(—X + 1))2] is replaced by
E[I(x <o) (log(—X +1))*]. When b = 0, E[Iix20X? (log(X +1))] is re-

placed by E [I(X >0) (log(X + 1))4]. We write A\g = arg min Py()\) and assume
that )y is an interior point of A.

}n order to explore the limiting distribution of t,,,(S\), we first show that
t,(A) — t.(Xo) = 0,(1). Yeo and Johnson (1997) show that the M.L.E., A, is
a strongly consistent estimator of Ag and \/n(A — A¢) has a normal limiting
distribution under Hy. We write X*) = ¢(A, X) and YN = (7, A, X) =
w()\, 1+7)X+ ur,,)) to parallel Chen and Loh (1992). Then, letting r
and u be finite fixed numbers, and setting 7, € [0, 1], we can also obtain the
strong consistency and limiting normality of A under H, (see Chen and Loh
(1992)).

We next switch from their argument and expand /n (1_/(&) -X (X)) about
Ap as in Doksum and Wong (1983). We have

vn (}7(;) _ X“’) —Vn (}_/(An) _ X(z\n)) + \/;(5\ — Xo) (Vf/(**) _ V)Z(**)) ’
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where |A, — Ag| < |A — Aol. Applying Rubin (1956) to VX (*+) and Vy )
we conclude that VX =2, E[VX(’\)] and VY 25 E[VY(*)] uniformly

in A for A € A. Since E[VY(")] is uniformly continuous in (A, 7,) € A x
[0, 1], E[VY(A)} converges to E[VX(’\)] uniformly in A as 7, = 7/\/n —

0. Consequently, VY (*<) 2%, [VX ] under Hy as well as H,. Since

V(A =) = 0,(1),
\/n( y® — x@ ) Vn <Y(f\0) X ’\“)) +0,(1). (3.1)

The uniform convergence of the pooled sample variance and the strong
consistency of A ensure that S,(g) = o(Xg) + 0,(1) and S2(\) = o2(}) +
0,(1) = 0*(Xg) + 0,(1) under Hy as well as H,. Since \/n (Y(*“) X("")) =

0,(1) and S, (A) — S, (o) = 0,(1), using (3.1), we obtain that

A — )7(&) . X(A) y (o) — x (%)
tu(A) —t.(Ao) = \ 1nz (< S, () )—< S, (Ao) ))
_ N2 (o Ao) Su(Xo) = S"(S\) o ) =90
= R (e - xo) (2B o)) o)

Hence, we obtain that ¢, ()) — ¢, (Xo) = 0,(1) under Hy as well as H .
Next, we show that ¢, () -, N (g, 1), where the limiting mean u,, is

Hxo = T\/mE [(TX +u) (I(XZO)(X + 1)*~1

Hix <o) (=X +1)'72)] Jo(3). (3.2)
In particular, for A\g =1, pu; = 7,/¢(1 - 5)(TE[X] + u)/o. Define

Z,(\) = rung/n (YN - X - (B [y®] - E[XW])) /5.0,
p(V) = fning/n (B[Y™)] - E[X(”]) /8. (N).

Then, from (2.1), ¢,(A) = Z,(\) + p,(2). By the central limit theorem
and the almost sure convergence of S, (1) to o()), we have Z, (1) -2 N(0,1).
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Expanding YV = ¢ (7,. A, X) about 7, = 0, we see that Y*) = (0, ), X)
+7, %w(r,,,)\, X)‘ ~, where 0 < 77 < 7,. Since (0,1, X) = X® and

Tu=
Ty =Ty :I

- E[(rX +u) (I(-"ZO)(X + DM Ly X + 1)1—A)] ;

lim F

n—oc

4]
_a—w(TuaA’X)

It

pa(X) converges to p, as n — oo. Therefore, ¢, (A\) =% N(p,,,1) since
tn(/\) - tn ()‘0) - O/'(]‘)‘
Theorem 1. Let t()\y) be the test based on t, (A) and let ¢ be the ordinary
t-test, t = t, (1), based on the untransformed data. Then, the A.R.E. of t()o)
totis
2

ARE(t(X),t) = (p4s, + 4By, (3.3)

where p = u/|rE[X] + u|, ¢ = rE[X]/|rE{X] + u| and

Ay = 0E[Ixz0)(X + 17 + o (=X + 1)) Jo(A), (3.4)
By, = o {E[X (hxzm(x + 1)+ Iy oy (— X + 1)1~A“)] /E[X]}/U()\)~
(3.5)

Furthermore, the A.R.E. of location-shift model, (r =0,u = 1), is

ARE(i(xo), 1) = A}, 2 1, (3.6)
and the A.R.E. of scale-shift model, (r = 1,u = 0), is

ARE(t(X),t) = B}, > 1, (3.7)
when (Ao > 1, E[X] > 0) or (%o < 1, E[X] < 0).

Proof. Let 3(7,|t*,n) be the power of test t* at the local alternatives based
on sample size n. Since ¢, (}) L, N(u,,,1) where p,, is defined in (3.2), we
conclude that the limiting power 1 — ®(z, — uy,) = lim, .o B(7.[t(A), n),
where ® denotes the standard normal distribution function. Modifying the
sample size to n’ for t = t(1), and matching limiting power, we determine

lim 3(r,[t.n') = lim 3 ((n'/n)l/zr,,flt,n') =1—®(z, — %)

=00
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Therefore, we have
é(za - /J’/\u) = Q(Zu - 71/2;1’1)'
According to (3.2),
wa = TEQ =) {uB[Iixo0) (X + 1007 + Ixco(—X + 1) 7]
+rE[X (Ixs0(X + 1) + Iixcop (=X + 1)'7)] } /o (2o).
2
Thus, the limiting power are equal when y = p3 /p? = (pA,\0 + qBAO) .
By (2.3) and the definition of Ag, Py(Aq) < Py(1) so
7%(Xo)
0_20 < exp(2(Ao — 1)n). (3.8)

By the definition of n above (2.3), Jensen’s inequality yields

exp(2(Ao — 1)1) < B2 [I(x>0(X + DM + Iy cop(—-X +1)'70] . (3.9)
The right hand side equals A% 02(Xg)/0?, according to (3.4), which proves
(3.6).

Suppose Ao > 1 and E[X] > 0. Then, I (x50 (X +1)* 1+ (x co)(—= X +1)'*
is clearly increasing in X, so

cov[X, Iix20)(X + 1M + Ixcq (=X +1)' 7] 2 0
or, by definition of covariance,

E[I(x >0y (X + 1) + Iix co)(—X + 1)1”\0]
< E[X (Ixz0/(X + DV + Iix (=X +1)' )] /E[X].
Thus, by (3.8) and (3.9),

a?(Xo)

= (E[X (I(XZO)(X + 1)+ Ixco (X + 1)140)] /E[X])Z'

(3.10)
Similarly, for Ao < 1 and E[X] < 0, I(x50)(X + )} '+ Iixco)(=X + 1) " is
decreasing in X so

cov [X,I(xzo)(X + 1)’\"“l + I(x<0)("X + 1)1_'\"] <0
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and then,

E Iz (X + DN + Ixco (=X +1)' ]
< E[X (Ixz0 (X + DV ' + g co (=X +1)')] /E[X],
which is the same inequality as (3.10). Therefore, when (A > 1, E[X] > 0)
or (Ao < 1,E[X] < 0), ARE(t()g),t) > 1.

Remark 1. When E(X) is negative, the tests might have a left-sided rejection
region, t < —t,, under a scale shift.

4. NUMERICAL EXAMPLES

Example 3.1 : Scale Shift Model. To compare the performance of the
tests based on the original data and the transformed data, we suppose that a
random variable X have a mixture distribution: fx(z) = 0.7 fi(z)+0.3 fy(z)
where f)(z) is gamma distribution with (a, 8,v) = (4, 1, 3.5), that is,

_ (z+35)° exp(—(z + 3.5))

and fy(z) is normal(—1.5,1). Then the distribution of X is skewed to the
right and £(X) = —0.1. A numerical calculation gives Ag = 0.5913 and the
ARE(t(Xo),t) = 38.360 for a scale-shift within this model. Table 1 gives
the powers of the ordinary t-test and the transformed ¢-test for n; = 20 and
ny = 25, at nominal level 0.05. Each result is based on 40,000 Monte Carlo
trials. The results of the simulation are consistent with the fact that the
transformed t-test is asymptotically more efficient than the ordinary ¢-test
under the scale shift in this example.

, z>—-35

Table 1. Simulated powers of the ordinary t-test and the transformed t-test
for scale shift in a mixture model.

shift | 0.0 02 04 06 08 1.0
t 0.049 0.051 0.055 0.056 0.059 0.061
t(\) | 0.049 0.066 0.087 . 0.098 0.110 0.119

Example 3.2 : Location-and-Scale Shift Model. = Suppose Y = —X + 0.5,
where X is defined as in Example 3.1. Then the distribution of Y is skewed
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to the left and F(Y) = 0.6 > 0 so we expect the asymptotic power of the
t(A)-test to dominate that of the t-test over all shifts. In fact, we calculate
that Ay = 1.4004 for this model and

ARE(t(Xg),t) = {

1.371 for a location-shift

5.577 for a scale-shift

2.616 for a location-and-scale shift

Table 2. Simulated powers of the ordinary ¢-test and the transformed ¢-test

for location-and-scale shift.

Scale shift 00 01 02 03 04 05
Location shift = 0.0 ¢ |0.050 0.066 0.084 0.095 0.117 0.137
t(A) | 0.050 0.078 0.111 0.142 0.182 0.226
Location shift = 0.2 ¢ |0.124 0.155 0.191 0.222 0.266 0.292
t(A) | 0137 0.190 0.246 0.316 0.374 0.426
Location shift = 0.4 ¢ |0.249 0.309 0.369 0.416 0.462 0.506
t(A) | 0.281 0.370 0.461 0.535 0.597 0.650
Location shift = 0.6 ¢ | 0434 0.510 0.569 0634 0.672 0.713
t(A) | 0.481 0.589 0.672 0.749 0.789 0.834
Location shift = 0.8 ¢ |0.621 0.707 0.759 0.807 0.841 0.866
t(A) | 0.684 0.781 0.845 0.890 0.917 0.932
Location shift = 1.0 ¢ | 0.791 0.850 0.891 0.920 0.935 0.947
t(A) | 0.846 0902 0.942 0.964 0.972 0.979

Table 2 gives the powers of the ordinary ¢-test and the transformed t-test
for n; = 25 and ny, = 30, at nominal level 0.05 according to 40,000 Monte
Carlo trials. It is shown that the transformed t-tests have a higher power
than the ordinary ¢-test under all shifts.

Two simulations above re-confirm Chen and Loh’s (1992) result that per-
forming a two-sample t-test with transforming the data is preferable.
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