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ABSTRACT

In the context of binary response regression, the problem of con-
structing Bayesian goodness-of-link test for testing logit link versus
probit link is considered. Based upon the well known facts that cdf
of logistic variate =~ cdf of tg/.634 and, as v — oo, cdf of ¢, approxi-
mates to that of N (0, 1), Bayes factor is derived as a test criterion. A
synthesis of the Gibbs sampling and a marginal likelihood estimation
scheme is also proposed to compute the Bayes factor. Performance of
the test is investigated via Monte Carlo study. The new test is also
illustrated with an empirical data example.
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1. INTRODUCTION

The theory of binary dependent variable regression has its genesis in bioas-
say(see, for example, Finney, 1971). In that context, Y; denotes a Bernoulli
random variable with the probablilty of success p;, i = 1,:--,n., where p; is
related to a set of covariates which may be continuous or discrete, and the
binary response regression model is defined as

Y, = F(X{) +u, i=1-n, )

where the u; is uncorrelated random error with Eu, =0, X is a vector of, say,
q fixed covariates, Bisa vector of unknown coefficients, and F(-) is a known
cdf linking the probability p; with linear structure X3 so that p; = F(X/3).
In particular, when the link cdf F(having link function F~'(-)) is taken to
be the standard normal cdf, the resulting model is called the probit model,
while a logit model is obtained if F' is the logistic cdf. These models are dis-
cussed extensively in Nelder and McCullagh(1987) and Collett(1991). For the
two models, Press(1982) and Griffiths, Hill and Pope(1987) examined estima-
tion problem from non-Bayesian viewpoint, and Dellaportas and Smith(1993)
and Newton, Czado and Chappell(1996) examined the same problem with
Bayesian approach.

Specify the model (1.1) by choosing the link cdf F to be the family of ¢
distributions. Then the probit link is a member of the model for t,, = N(0,1).
Moreover, due to Albert and Chib(1993) and Soofi, Ebrahimi and Habibul-
1ah(1995), the most popular logit link function can be approximately viewed
as a member of the ¢ distribution family, because cdf of logistic variate =~ cdf
of t3/.634. This specification allows one to investigate the sensitivity of fitted
probabilities by the choice of link function. In addition, one can examine
which value of the degree-of-freedom parameter for ¢ is best supported by
data. A type of the latter procedure is referred to as goodness-of-link test.
Collett(1991) gave a procedure for the goodness-of-link test for logit link ver-
sus complementary log-log link based on the family of link functions proposed
by Aranda-Ordaz(1981). However, due to complexity of the link functions to
be compared, a formal goodness-of-link test procedure for probit link versus
logit link has not been proposed yet. Thus frequentist goodness-of-link test
criterion for this non-nested model comparison mainly depends on informal
graphical method such as the index plot and the partial residual plot. The
aim of this paper is to suggest a formal test criterion via Bayesian approach.

This paper introduces a Bayesian approach to model selection for choosing
the best supported model among the family of ¢ link binary regression models.
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Then, by means of the approach, we propose a Bayesian goodness-of-link test
procedure for probit link versus logit link based upon the family of ¢ link
functions. Performance of the suggested test is also examined with illustrative
examples.

2. BAYESIAN TEST CRITERION

Denote the binary regression model (1.1) as M and let »(3|M), a proper
or improper prior density, summarize our prior information about 3. The
marginal likelihood under the model M with link cdf F is given by

m(vp) = [« [IF(XBY* (1 - FXGB)Y"ap,  (2.)

where Y = (Y}, --,Y,). Suppose that we are interested in comparing any
two models M, (with F = F,) and M,(with F = F,;). Usual Bayesian model
choice procedure is based upon the Bayes factor:

When By, > 1 or InB,, > 0, we may consider M, as the better model
supported by data. See Jeffreys(1961) for interpretive ranges of the Bayes
factor. If we set M; and M, as probit link model and logit link model,
respectively, the Bayes factor B;, obtained from (2.2) can be a goodness-of
-link test criterion for testing M, versus M,.

It is noted that the problem of analytically calculating each marginal
likelihood for the Bayes factor Bi, which is the normalizing constant of its
posterior density, is extremely challenging(cf. Newton, Czado and Chap-
pell, 1996). Recent development of an MCMC(Markov Chain Monte Carlo)
method called the Gibbs sampling approach provides several methods that
directly address simulation-based calculation of the marginal likelihood(cf.
Newton and Raferty 1994, Gelfand and Dey 1994, and Chib 1995). However,
the approach is not generally applicable to the calculation of the Bayes factor
Bio. This is due to the fact that the marginal likelihood of the logit link
model, m(Y |M3), can only be evaluated under specific assumptions: (i) Sam-
ple size at hand is large. (ii) Substantial prior information is available for the
Bayesian inference. (iii) Resulting posterior distribution of parameters in the
model is asymptotically. normal. Therefore, as pointed out by Dellaportas
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and Smith(1993), if the above-mentioned assumptions are not met, calcula-
tion of m(Y|M;) by posterior simulation will turn out to be misled. Thus
we need another criterion for the goodness-of-link test which is applicable
without any assumptions. In this section, we will propose a general scheme
for calculating the Bayes factor B, with the Gibbs sampler so that, without
any assumptions, it may always provide a method for computing the Bayes
factor.

Let M(t) be a class of regression models for binary response data having
the link cdf T,, where cdf T, is the family of ¢, distributions. Then the

following lemma gives an approximate Bayes factor for testing the probit link
model versus the logit link model.

Lemma 1. Suppose M(,) € M(t) and M5 € M(t) denote the binary re-
gression models (1.1) having ¢ link cdf’s T, and Tg, respectively. Then, as
v — 00, the Bayes factor B, is approximately equivalent to

m(Y| M)
m(Y[M))

[ w(B1M() TTiea T, (X{8)"{1 ~ T,(X[B)}'"'dB
J 7 (Bs|Mg)) TTiz; Ta(X(Bs)V: {1 — Ts(X;PBs)}' ~":dBs
where 3 = .6343.

Bu,8

Proof. Noticing that t,, v — oo, corresponds to the unit normal distribution,
one can generalize the probit link by choosing ¢, link so that the marginal like-
lihood m(Y |M,)) — m(Y|M;) as v — oco. On the other hand, as mentioned
in Section 1, cdf of logistic distribution is approximately equivalent to that of
ts/.634, and hence Pr(Ul < X/B) ~ Pr(U2/.634 < X/8) = Pr(U2 < X!Bs),
where U1 and U2 are logistic random variable and tg random variable, respec-
tively, and Gs is equal to .6343. This leads to the following relation between
the logit link model(M;) and the binary response T link cdf regression model
M(g) .

Yi = F(X:,B)+’U.,,
=~ TS(X:/BS) +u;, 1= 1,---,n,

where F is the logistic cdf link. From the relation, we see that Ms) with the
coefficient vector 3g is approximately equivalent to M, apd hence m(Y |M;) ~
m (Y I M 8) ) .
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3. COMPUTING THE BAYES FACTOR

3.1. Gibbs sampler

Consider a model M, € M(t). Let f(Y|8, M) = ITi-, T.(X{B8)"{1 -
T,(X!8)}'~¥ denote the sampling density(likelihood function) where T, (-) is
the cdf of t distribution with v(fixed) degrees of freedom. To allow the possi-
bility that the posterior simulation requires data augmentation, we introduce
n latent variables Z,, - -, Z,, where the Z; are independently distributed as
a t with location parameter X3, scale parameter 1, and degrees of freedom
v, such that

Zi ~t,(X!8,1) and Y; =I1(Z;>0), i=1,---,n, (3.1)

where I(A) is an indicator function of the event A. The above specification in
fact defines the t, link model because Pr(Z; > 0) = T,(X;3). Let us introduce
the additional independent random variables A;, and write the distribution of
Z; as the following scale mixture of normal distribution:

Zilhi ~ N(X!8,A;') and A\, ~ Gamma(v/2,2/v), i=1,---,n, (3.2)

so that Z; ~ t,(X!3,1). Suppose an informative prior distribution 8 ~
N,(a, Q27 1) is chosen for the regression parameter. Then the joint posterior
density of the unobservable 8, Z = (Zy, -+, Z,),and A = (A1, -+, . ) given
the data Y = (Y3, -+, Y,) of the model M, is given by

p(Z MBIV M) o [THI(Z: > O1(Y: = 1)+ I(Z, < 0)I(Y, = 0)}(3.3)

i=1

$1(Z:; X8, A1) (850, @ Ne(w)A* e 12,

where c(v) = [['(v/2)(2/v)"/?]7}, and ¢,( ; 4, X) is the N, (i, Z) pdf.

Note that this joint distribution is complicated in the sense that it is
difficult to normalize and directly sample from. But computation of respective
marginal posterior distributions of Z;’s, A;’s, and B using the Gibbs sampling
algorithm requires only fully conditional distributions of them. The required
fully conditional distributions are

BIZ, A\, Y, My, ~ N,(B,(Q+X'D,X)™"), (3.4)

where 8 = (Q+ X'DyX) a2+ X'DyZ), X = (X1,---,X.), and Dy =
Diagonal(Ay, -+, A).
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Zi,+++,Z, are independent with

Z18,\, Y, My, ~ N(X/B,A7NI(Z:>0) if Yi=1, (3.5)
Zi|B, A\, Y, My ~ N(X{B,A\'1)I(Z;<0) if ¥i=0,

where N (X!B8,A7)I(B) is the normal distribution truncated to the interval
event B.

A1, -, A, are independent with

v+1 2
x|, Z,Y, M,y ~ Ga , .
18 @) mma( 2 u+(z,-—X;ﬁ)2>

Derivation of (3.4) is given as follows: From (3.3), the posterior density of 8
given Z, A is

p(ﬂ'Z,A,Y, M(u)) 15,8 ¢q(ﬂ)a,Q_l)Hd’l(ZnX::B,)‘:l) _ (36)

i=1

This conditional density is the usual posterior density for the weighted re-
gression parameter in the normal linear model

Z = XpB + ¢,

where ¢ is distributed N, (0, D;'). Using standard results(cf. Zellner, 1971)
with the informative prior pdf ¢q (8;a, 1), we have (3.4). Note that simula-
tion from the truncated normal distributions in (3.5) can be easily conducted
via the algorithm by Devroye(1986).

3.2. Computing Procedure

As given above, the Gibbs sample for the model M, is defined through
the complete conditional posterior densities:

p(B1Z, A\, Y, Myy); p(MIZ,B,Y, M(y); (ZilB, A Y, M(y)); i =1,
(3 7)
The objective is to compute the marginal likelihood m(Y|M(,) ) from the
Gibbs output obtained from the above conditional posteriors.

Lemma 2. Given the complete conditional densities (3.7), the marginal like-
lihood of the model M, is given by

FY18, Mu))m(B1M ()
p(/@IY’ M(")) ,

m(Y|My) = (3.8)
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where 7(8|M(,,) is the prior density of 3 and

p(B|Y, M) = /P(ﬂ!Z,/\,Y, Muy)p(Z,AY, M(,y)dZdX.

Proof. As defined in (2.1), m(Y|M,)) = [ n(8/M))f(Y|8, M(,))dB. Thus
Bayes theorem, i.e.

gives the result.[]

Note that (3.8) holds for any 8 in the regression parameter space. Let G
replicated outputs from the Gibbs algorithm(cf. Gelfand and Smith, 1990)
with (3.7) be given by {8, \¢), Z9)} where

2D = (WO A0y Z6) = (20 @Y g =1,..-,G.

Then the posterior density, p(3|Y, M(,)), is appropriately estimated by taking
the ergodic average of the full conditional density with the posterior draws of
(Z, ), leading to the estimate

G
h, = G SR, (3.9)

g=1
where h(,) = p(8|Y, M(,)) and h{¥) = p(8|2), A9, Y, M(,)). By virtue of the
ergodic theorem(cf. Tierney, 1994), it can be shown that, for any 3 € RY,
ﬁ(ﬁlyv M(,,)) - p(ﬁ|Y, M(u))’ as G — oo,

almost surely. Thus, for given 8 at 8*, (3.8) and (3.9) lead to the desired
estimated marginal likelihood
_f(Y|87, M,)) (8" M)

(¥ IMe) = P8IV, M) (3.10)

As for the selection of the point 3*, the choice of the point is not critical,
because Lemma 2 holds for any 3. However, for efficiency of estimation, it
may be better to take 3* as posterior mean or posterior mode of 3 which can
be easily obtained from the Gibbs output.

Lemma 3. Let M), M(,2) € M (t) be any two t link binary regression
models to be compared. Then the simulation-based estimate of the Bayes
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factor(B,..2) in logarithm scale, for given 3 at 3}, i = 1,2, is
In Bul.u2 = In f(YIB;u M(ul)) —In f(YIB(.d)v :/2)) (311)
+ Inw(8),|Mu) — In7(8],|M(,2) — Ink}, +Inhy,
with
lnBul.uZ - lnBul.u2 as G — oo, (312)
and
- ’ ~
R dlnB,, - [0InB,;,
var(In B, ,2) = (__n_u> var(h*) (——E—T—]—z , (3.13)
Oh* oh*

where the derivative vector consists of elements —h" Y and h2;!,

var(h*) = G™! [Ao + z[: ( T 1> (A, + A )] (3.14)

G
A, =G Y (B9 - R (R — prY,

g=s+1

B = Ry, hig)'s bl = BBLIY, M), b = (%, 8Y,
*(9) =p(8112%, ’\(y)’Y’ M4y), + = 1,2, and ¢ is some constant at which
the autocorrelatlon function of hfﬂ) tapers off.

Proof. The Bayes factor for the two models M(,1) and M,5), i.e. m(Y|M(,1))
/m(Y|M,z), can be estimated by repeating the calculation, described in the
derivation of (3.10), for both models. This yields

By = m(Y|My)/m(Y|Mz).

Taking logarithmic function on both sides of the equation, we have (3.11).
Since h inherits the ergodicity of the Gibbs output, it follows from the ergodic
theorem (Tierney, 1994) that (3.12) holds. Using the result of Chip(1995),
we have (3.14). Moreover, since In B,1 ., is a function differentiable at h*, its
variance (3.13) is found by the delta method(cf. Tanner, 1993).0]

The merits of logarithmic expression for the Bayes factor, (3.11), are
noted: (i) The estimate does not suffer from any instability occurring from
estimating the inverse value in (3.10). (ii) As shown in Lemma 3, the entire
estimation error arising from simulation can be easily derived. An estimate
of the Bayes factor will be obtained by computing anti-logarithm of (3.11).
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When several models are to be compared, Lemma 3 would extend in a natural
way.

Corollary 1. Suppose M(,1), -, M(,,) are K t link binary response regres-
sion models to be compared. Then the best fitted model M, ) supported by
the data is chosen such that

In (Y| M) = Max{ln (Y |M;);5 =1,---, K}. (3.15)

The criterion in (3.15) may be used for the variable selection procedure
for probit, logit, and ¢ link models. Variance of Inm(Y |M(,x)) can be easily
obtained from the result of Lemma 3.

Theorem 1. Given a binary response data set, logarithm of the Bayes factor
for the goodness-of-link test criterion for testing probit link model versus logit
link model is approximately estimated by

InB,s = Inm(Y|M,)) — Inm(Y|Mg), asv — oo, (3.16)

where m(Y|M(,)) and m(Y|M,)) are defined by (3.10).

Proof. Lemma 1, Lemma 2, and Lemma 3 give the result.0

Theorem 1 leads to the Bayesian goodness-of-link test criterion: IfIn B, 5 >
0, the data set is in favor of probit link model; otherwise it is fitted to logit
model. Value of v can be chosen so that it may achieve desired degree of
accuracy in the approximation. We refer to Johnson and Kotz(1969) for the
formula for deciding the degree of accuracy.

4. ILLUSTRATIVE EXAMPLES : Probit Link Versus Logit Link

4.1. Simulation Study

A simulation study is done to investigate the performance of the Bayesian
goodness-of-link test suggested in the previous section. Main concern in our
simulation study is to examine whether the suggested test safely chooses the
best fitted model between probit and logit link regression models. Two models
considered in this simulation study are

Model 1 <I>_1(p,») = Bot+HX:,, i=1,....n,

Model II. logit(p;) = Bo+ 5 Xi, i=1;...,n,
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where p, = Pr(Y; = 1). Given the values of 8y and 3;, each model generates
the data set {Y;, X,} of size n using p, values generated from U (0, 1). Based
upon the generated data set, we compute Bayes factor (B,, g in Theorem 1) for
testing probit link versus logit link and examine the efficiency of the criterion
in the test.

Since we are interested in the goodness-of-link test(not in the estlmatlon)
uniform prior is placed on the regression parameter 3, i.e. (8y,8:) are dis-
tributed uniform on R?. Then estimation of the Bayes factor is done by the
following steps. To initialize the Gibbs sampling procedure, the ordinary least
squares estimate of 3 obtained from linear regression analysis of current data
is used. The initial values of \;’s are set to one. Replications of the iterative
procedure thereafter proceed independently. An assessment of convergence of
the procedure is made by using the pragmatic checks on stationarity outlined
in Gelfand et al. (1990). In particular, a number of summary statistics from
the replicated samples (first and second moments and selected percentiles)
are monitored every 10 iterations for 3, augmented by direct graphical com-
parison of successive marginal density reconstrucmons in the final stages once
stationarity appears to be achieved. : ‘

This process (generating the data set and estimation of the Bayes factor
via the Gibbs sampling of G=500 cycles with 30 iterations in each cycle (the
Gibbs sequence with 30 iterations)) is repeated 200 times for each model.
Table 1 notes the resulting percentages of correct decision attained by the
suggested goodness-of-link test based upon the data set generated from true
models (Model I and Model IT) with various values of 3y, 81, § and n. Marginal
log-likelihood and its standard deviation of each t, link model(v = 8,90, 120)
are also tabulated.

4.2. An Empirical Example
We illustrate the goodness-of-link test on nodal involvement data analyzed

by Collett(1991). The data set is listed in Table 2. Two models to be com-
pared are probit and logit link models with covariates fitted by Collett(1991):

d ' (p) = Bo+ Bilog(Xy) + B2 Xai + B3 Xa (4.1)
and

logit(p;) = Bo + B1log(X1:) + BaXoi + B3 X, (4.2)
where i = 1,---,53. Here X, is level of serum scid phosphate, Xy is the

result of an X-ray examination, coded 0 if negative and 1 if positive, X3; is
the size of the tumor, coded 0 if small and 1 if large, and the binary outcome
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Table 1. Marginal Log-likelihood, Its Standard Deviation(in parenthesis),
and Percentages of Correct Decision via Bayes Factors Big s and Bggs

(Bo,B1) n v=2_8 v=90 v =120 Bgos Bizs
(True  Model 1)
(1,2) 10 -5.3386 -3.8252  -3.8655  95.5 96.0
(6053)  (.2120)  (.2158)
20 -10.0092 -6.2019 -6.2317  97.5 98.0
(7717)  (.3054)  (.3382)
50 -29.1725 -19.2471 -19.4135 98.5 99.0
(7835)  (5672)  (.5012)
(0,4) 10  -4.8423 -3.3836  -3.4691  90.5 89.5
(6166)  (.5172)  (.4144)
20 -8.8803 -5.8826 -5.9798 98.0 98.5
(5057)  (.2684)  (.2610)
50 -24.9700 -19.0324 -19.3364  99.5 100
(7297)  (.2449)  (.5214)
(2,1) 10 -5.1293 -3.7659  -3.7015 94.5 95.0
(6258)  (.3625)  (.3391)
20 -9.7632 -7.3221  -7.2190 96.5 97.0
(7121)  (.4325)  (.4306)
50 -26.5625 -19.8962 -19.8773 99.5 99.5
(7352)  (5769)  (.4918)
(True Model II)
(1,2) 10 -4.5167 -5.6745 -5.8231 91.5 94.0
(7089)  (.4796)  (.3424)
20 -7.2349 -8.1453  -8.5168  92.5 94.5
(.8248)  (.7030)  (.4425)
50 -23.9223 -29.2651 -29.4008  98.5 99.0
(7835)  (.5672)  (.5012)
(0,4) 10 -3.5393 -4.1112 -3.9902 88.5 87.5
(.4800)  (.3858)  (.6227)
20  -5.5740 -6.1728 -6.2386  94.0 96.5
(.4445)  (.3224)  (.3340)
50 -18.5758 -19.6891 -19.9439 95.5 97.0
(.9997)  (.8749)  (.5127)
(2,1) 10 -5.1432 -6.1934 -6.0170 91.5 93.0
(6651)  (.5657)  (.5169)
20 -9.1326 -9.8241 -10.1209 93.5 94.5
(.7332)  (.7340)  (.6906)
50 -25.4125 -30.6282 -31.2173  95.0 96.5
(9823)  (.7980)  (.9163)
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Table 2. Nodal Involvement Data

case Y X1 X2 X3 case Y X1 X2 X3 case Y X, X2 X3
1 0 .48 0 0 2 0 .56 0 0 3 0 .50 0 0
4 0 .52 0 0 5 0 .50 0 0 6 0 49 0 0
7 0 .46 1 0 8§ 0 .62 1 0 9 1 .56 0 0
10 0 .55 1 0 1 0 .62 0 0 12 0 .71 0 0
13 0 .65 0 0 14 1 .67 1 0 15 0 47 0 0
16 0 .49 0 0 17 0 .50 0 0 18 0 .78 0 0
19 0 .83 0 0 20 0 .98 0 0 21 O .52 0 0
22 0 75 0 0 23 1 .99 0 0 24 0 1.87 0 0
25 1 1.36 1 0 26 1 .82 0 0 27 0 .40 0 1
28 0 .50 0 1 29 0 .50 0 1 30 0 .40 0 1
31 0 .55 0 1 32 0 .59 0 1 33 1 48 1 1
34 1 51 1 1 35 1 .49 0 1 36 0 48 0 1
37 0 .63 1 1 38 0 1.01 0 1 39 0 .76 0 1
40 0 .95 0 1 41 0 .66 0 1 42 1 84 1 1
43 1 .81 1 1 44 1 .76 1 1 45 1 .70 0 1
446 1 .78 1 1 47 1 .70 0 1 48 1 .67 0 1
49 1 .82 0 1 5 1 .67 0 1 51 1 72 1 1
52 1 .89 1 1 53 1 1.26 1 1 - - - - -

observed is the occurrence or nonoccurrence of cancer surrounding lymph
nodes.

Under the assumption of uniform prior for regression parameters, we un-
dertake the Gibbs sampler for G=5000 cycles with Gibbs sequence 30 after
deleting the first 500, and the estimates 3], v = 8,120, are obtained. Log-
arithm of the Bayes factor for M(120)(probit model) versus M(s)(logit model)
is 8.6991 supporting probit model for the binary response data. The Gibbs
sampling yields the following estimated models for (4.1) and (4.2):

& 1(p;) = —1.0020 + 2.8276log(X1;) +2.2451 X, + 1.8457X5  (4.3)
and
logit(p;) = —5.6444 + 8.292log(Xy;) + 11.0375X5; + 7.2695X5.  (4.4)

A plot of the standardized deviance residuals agamst the corresponding
observation number, known as the index plot(cf. Collett, 1991), is given in
Figure 1 and Figure 2 to show that the probit model is adequate for the data.
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5. CONCLUDING REMARKS

We have considered the problem inherent in modeling an optimal bihary
response regression model with unknown link function. Our consideration in
this paper concerns with a goodness-of-link test for probit link model versus
logit link model. As a Bayesian criterion for the test, an approximate Bayes
factor is proposed. It is derived by the well known facts that cdf of logistic
and standard normal variates approximately equal to those of t5/.634 and ¢,
for a large v, respectively. Computing method for the Bayes factor is also
proposed by means of a synthesis of Gibbs sampling and marginal likelihood
estimation scheme. The numerical studies in Section 4 show that the proposed
test yields favorable goodness-of-link test results without regard to the sample
sizes considered.

The proposed test has a number of advantages. First, it allows one to
perform the desired test simply by a Bayes factor designed for ¢ link binary
response regression models, where it may be difficult to evaluate the exact
Bayes factor for probit model versus logit model. Second, the proposed test
will be preferable to the test by sampling approach(even though it has not
been proposed) for small samples. Finally, computing the test criterion using
the Gibbs sampling requires simulation mainly from standard distributions ,
such as the normal distribution and the gamma distribution and, therefore,
is easy to implement using many statistical packages.

The model selection criterion suggested in Corollary 1 is easily applicable
to the variable selection procedure for probit model, logit model, and the ¢
link binary response regression model. Especially, the criterion allows one
to choose the best model among non-nested models(owing to variable trans-
formations), which might be a merit of the criterion over the usual model
selection criteria such as AIC and SBC. A study pertaining to the variable
selection using the criterion is worthy of carrying out and is left for future
study.
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