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ABSTRACT

The variable sampling rates scheme is proposed by taking random
sample size and sampling interval during the process. The performance
of the scheme is measured in terms of the average time to signal ad-
justed by the sampling cost when the process is out of control. This
measurement evaluates the effectiveness of the scheme in terms of the
cost incurred due to nonconformities as well as sampling. The variable
sampling rates scheme is shown to be effective especially for small and
moderate shifts of the mean when compared to the standard scheme.
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1. INTRODUCTION

In continuous production processes control charts are widely used in mon-
itoring shifts in process parameters. A typical example of the control chart
is the Shewhart X chart. Shewhart charts are shown to be less efficient in
monitoring small shifts in the process parameters compared to large ones de-
spite its easiness of application. Several studies have been done to improve
the efficiency of the Shewhart chart by modifying the procedure. Examples
are the use of warning lines by Page (1954) and run rules by Nelson (1984).
These modifications have shown to improve tlie chart considerably.

A further modification of the Shewhart X chart by varying the sampling
interval or the sample size was proposed to improve performance of the chart
for small and moderate shifts. The variable sampling interval (VSI) chart
scheme was proposed by Reynolds et al. (1988) and Runger and Pignatiello
(1991). The variable sample size (VSS) chart scheme was also studied by
Prabhu, Runger and Keats (1993), Costa (1994). and Park and Reynolds
(1994).

In the VSI scheme the sampling interval between the current and the next
samples is varied according to the current state of the chart statistic while the
sample size is fixed. In the VSS scheme the size of the next sample is varied
according to the current state of the chart statistic while the sampling interval
is fixed. Both of the two schemes have shown to be more efficient than the
classical Shewhart chart. A combined scheme of VSI and VSS was proposed
for further modification by Prabhu, Montgomery and Runger (1994). The
combined approach will be called as the variable sampling rates (VSR) scheme
in this paper. They showed that the VSR X chart outperforms the VSI and
VSS charts by comparing the average time necessary for an out-of-control
signal.

The idea of the VSR chart is to combine the VSI and VSS schemes. that
is to vary the next sample size and the sampling interval between the current
and the next samples according to the current state of the chart statistic.
If the current chart statistic falls near inside the control limits, we use large
sample size and small sampling interval for the next sample to detect shifts
more quickly if they occurred, otherwise we use small sample size and large
sampling interval. The traditional approach to sampling for a control chart
is to take the fixed sampling rate(FSR) in which we take a fixed sample
size(FSS) with a fixed sampling interval(FSI) between samples.

In the classical control chart the performance of the chart is measured
by the average run length (ARL) for comparing the efliciencies of control
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schemes. However the ARL is a valid measure only for cases where the sam--

pling interval and the sample size remain the same. In the VSR scheme an

alternative measure of performance to the ARL is the average time to signal -

(ATS) which represents the mean time until detection from the occurrence of
an assignable cause. As long as the sampling cost remains fixed, large ATS
when in control will increase profit due to conforming items and small ATS
when out of control will reduce the loss due to nonconformities. Prabhu,
Montgomery and Runger (1994) compared the performance of the VSR X
chart with other schemes by the ATS.

The sampling cost depends on the number of samples and observations
taken during the process. For a given period of time the short sampling inter-
val as well as the large sample size increase the sampling cost. In evaluating
the effectiveness of the VSR scheme, we need to consider the ATS together
with the sampling cost. In this paper the design and the effectiveness of the
VSR X chart are studied in terms of the ATS adjusted by the sampling cost
by comparing it to the FSR scheme. Also the optimal chart parameters are
selected for some given mean shifts.

2. DESIGN OF THE VSR X-CHART

Consider a process in which the distribution of the observations is normal
with mean p and variance o, and the objective is to detect shifts in x from
a target value pg. Suppose that random samples of variable size are taken at
intervals of variable length during the process. '

Let N, and H, be the k-th sample size and the sampling interval between
(k-1)th and k-th samples, respectively, and let X} = (Xy1,- . Xyn,) be the
sample taken at k-th sampling point. Then the procedure of the VSR X -chart
is to compute the standardized sample mean T} = VN (X v — Mo)/o at each
sampling time k and plot on a control chart with control limit +c. If T} falls
outside the -control limits, then an out-of-control signal is given.

In standard X -charts, the sample size and the sampling interval (Ny, Hy)
are fixed in advance, but in the VSR X -chart, they are determined accord-
ing to the value of the previous statistic Tx-1. In this paper, we consider
only two number for both of the sample sizes and the sampling intervals for
administrative convenience. Let n, and n; be the minimum and maximum
sample sizes, and h, and h; be the minimum and maximum sampling inter-
vals, respectively. The minimum sample size can usually be set as n,=1. If
we want a variance estimate the minimum sample size can be set as n,=2.
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The maximum sample size and minimum sampling interval can be restricted

according to the process conditions such as the time necessary for obtaining
and charting observations.

We partition the interval (-c,c) to determine the sample size and sampling
interval for k-th sample as the following. For k > 2,

N 1 if ITk—ll < Cg,

Ny = { ny if cg <|Thoi| < ¢y (2.1)
. hq if |Tk_1| < ¢y,

He= { hy if ¢ < |Tioil < ¢, (2:2)

where n, < n; < ns < ny,hy > hy > hy > h,. The threshold limits to switch
the sample size and the sampling interval are denoted by cs and ¢, respec-
tively. Actually we divide the interval (-c,c) into three regions for determining
the sample size and sampling interval. Define ¢p = 0, ¢; = min{cg, ¢/}, ¢ =
maz{cs,c;}, c3 = c. Then for k > 2,

(nl,hl) if 0< |Tk_1| < ¢y, .
(Nka Hk) = (nnh*) if €1 S ITk—ll < ¢, (23)
(ng, ha) if ¢ < |Th-al| < e,

where

(n1,hg) if cg >cy,
(nz,hl) if eg <ey.

(nash.) ={

Figure 1 shows two possible examples of the partition and the corresponding
sampling rates.
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Tpo1 (Ni, Hy) Ty (N, Hy)
cg — C C3 = C

(’ng, hg) (n2a h’2)

Cp =C5 —1— Co=C ——
(n17 h‘?) (TL2, hl)

¢ =c¢r 1 cp=c¢g T
=0 — (n1, h1) co=0 — (n1, hy)
(n1, ha) (na, h1)

—cg—— —cy—
(n2, h?) (’I’lz, h2)

Ccs > Cy cs < ¢p

Figure 1 : The two possible partitions of (-c,c) and the corresponding (N, Hy)

Note that if n; = ns = ng then the VSR scheme reduces to the VSI scheme
with the FSS ng, if h; = hy = hg, then the VSS scheme with the FSI hy, and
if n; = ny = ng and hy = hy = ho then the standard scheme with the F'SS n,
and the FSI hy.

3. PROPERTIES OF THE VSR X-CHART

The properties of the VSR X-chart can be evaluated by the number of
samples, the number of observations, and the length of time it takes to pro-
duce an out-of-control signal. Let the average number of samples to sig-
nal(ANSS) , the average number of observations to signal(ANOS), and the
ATS be the expectation of the number of samples, the number of observa-
tions, and the time to signal it takes to produce an out-of-control signal,
respectively.

The sequence of {Nj, H,} generates a Markov chain with four states
corresponding to where T _; is plotted in the following four regions,

Il = (_cl, Cl)v
I2 = (—02’ _Cl] U [Cl, C2)7
Is = (—c3, —cg) U [eg, c3),

I; = (—o0, —c3) U [e3, 00).
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The region I, corresponds to an absorbing state and the transient state tran-
sition matrix is given by

Q = [qij]3x3’

where qi; — P(cj—l S |Tk| < Cj | Ci-1 S |Tk~ll < C'i)vi’j = 1’2’3'
Let Z be a standard normal random variable and § = (u — pg)/0o, then

T}, is distributed as Z + v/N;6. Thus the probability ¢;; can be expressed as,
forj =1,2,3,

qi; = Plcjo1 <|Z + /ny6]| < ¢)
= ®(c; — vn18) — P(cj-1 — Vmb) + B(—cj-1 = Vni6) — ®(—c; — V/n16),

Pcj-1 £1Z +v/nib| < ¢)
®(c; — Vnub) = B(cj-1 — Vnub) + B(—c;-1 — Vv1.8) — B(—c; — V/n.6),

- g3 = Pleja1 |2+ Vbl < ¢j)
B(c; — Vn26) — B(cj—1 — vVn2b) + B(—c¢;-1 — Vna2b) — B(—c; — /n2b),

where ®(-) denotes the standard normal distribution function. Notice thatgs;
is equal to ¢, or g3; according to n, =n; or n, = n, ,respectively.

Let Sg, Og and Uy be the number of samples, number of ovservations taken
when the process is in control, and the in-control period, respectively. Also
let so be the probability vector of the starting state, then the ANSS, ANOS,
and ATS when in control can be obtained by using Markov chain properties
as follows.

q2;

E(So) = sp[I- Qo] 7’1, | (3.1)
E(0o) = sy[I - Qo] 'n, - (32)
E(Uo) = so[I - Qo] 'h, (3.3)

where Q, is the transition matrix Q when in control, 1’ = (1, 1, 1), n’ =
(ny, n., ny), K = (hy, h., hy), and Iis 3 x 3 unit matrix. Note that rows of
Qo are all equal. In the beginning of the process we assume to use N; = ny
and H, = ho, i.e. s5 = (0,0,1).

Let S;, O; and U; be the number of samples to signal, number of obser-
vations to signal when the process is out-of-control, and the out-of-control
period, respectively. Then the ANSS, ANOS, and ATS when out of control
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can be calculated by assuming that the process starts with p = ug + 6. In
most cases of practical interest it will be more realistic to assume that the
process starts with 4 = uo and then the mean shifts to yo +6 at some random
time in the future. The length of time from the start of the process to the
time that an assignable cause occurs is called the in-control period. Also the
length of time from an assignable cause occurs to the out-of-control signal is
called the out-of-control period. Here we assume that the in-control period
follows an exponential distribution with mean 1/\. Also we assume that the
process is immediately reset to the starting state after each false alarm.

Let s; be the probability vector of the state at the sampling time immedi-
ately before the shift, and 7 be the time of occurrence of an assignable cause
from the k-th sampling time when it occurs between sample k and k+1. Then
by using the Markov chain properties we obtain the following expectations,

E(S) =si[I- Q'L (3.4)
E(0,) =s{[I- Q] 'n, (3.5)
E(U,) =si[I- Qi) "'h - E(7), (3.6)

where Q) is the transition matrix Q when out of control. The probability
vector s; and E(7) are obtained as follows [see Appendix].

Let 8 = e 2 {p,, e *M1=h2) 41 —p, } for py, = 2{®(c;) — 0.5}, then for
s; = (s1(1), 1(2), 1(3)) and qo; = 2{®(c;) — ®(c;-1)}d = 1, 2,

s1(1) = gue (1 —e ) /(1 - B8),

_ | quee (1 —e*2)/(1-B) ifes 2 e,
“m_{%wwwvwﬂwmuﬁ)ﬁ%<q, (37

s1(3) =1— e 4 (1 —go — goo)e (1 — e *2)/(1 - B),

_1-(1+ Ahy)e™ M emAh2(1 — g7 1)

E(T)_ A(l“'e_'\h]) 1_B Phy
1 — (14 Mhg)e M2 e 2 (1 — e M)
}\(1 — 6—'\'”) 1- 1-— ,8 Dy - (38)

The vector s; and E(7) depend on the parameter A of the exponential
distribution and the starting state probability vector sp. In order to remove

187
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the dependency on A and sy, we assume that the shift occurs after a reason-
ably long time of the in-control state so that s; and 7 are in a steady state
distribution. The steady state s, and 7 are obtained as follows by letting A —
0 and applying L’Hospital’s rule.

Sl(l) — quhl
ph] hl + (]- —phl)hZ’

h .

2) = Pryha 102(12—;:,,1);12 if cg > ¢y,
Sl( ) - 402’11 'f (39)

B+ (I=paohy LGS <€D

1 — g0 — qu2)h
5(3) = L= 90 —d)hs
h h _

E(T) — “1 Pri h2 (1 ph])h2 (310)

2 pp, by + (1 = pa, ) he _2—ph|h1 + (1 — pn, k2

4. COMPARISON OF VSR TO FSR

In evaluating the performance of the VSR X chart, we compare it to the
corresponding FSR X chart. The performance of the VSR chart is usually
evaluated in terms of the ATS. Small ATS when out of control subject to a
fixed ATS when in control ensures small loss due to nonconformities subject to
a fixed profit due to conforming items. The ATS when out of control tends to
decrease as the sample size increases and the sampling interval becomes short.
However if excessively small sampling interval and large sample size are used
during the short out-of-control period, there needs an increased sampling cost
which may cancel out the advantage of the small ATS when out of control.

Let R1(6) be the loss per hour due to nonconformities produced during
an out-of-control period with the mean shift §, and a-and b be the cost per
sample and observation, respectively. Then the cost incurred during the out-
of-control period can be expressed as

Thus minimizing the cost incurred during the out-of-control period reduces
to minimize the ATS adjusted by the sampling cost,
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a

E(U;) + 1 (8)

b
E(S,) + Rl(é)E(Ol)' (4.2)

In the VSR scheme with the control limit ¢ and the threshold limits cg
and c;, there are four chart parameters {n;, ns, hy, ho}. The optimal chart
parameters are determined as values which minimize the adjusted ATS.

To compare the performance of the VSR X -chart with the FSR X -chart,
we need to match the two schemes so that they have the same ANSS, ANOS,
and ATS when 6§ = 0. This matching can be accomplished as follows.

When the process is in control, the transition matrix Q reduces to

do1 dqo2 o3
Qo= | g1 92 903 |,
qo1 9do2 903

where g3 = 2{®(c3) — ®(cz)}. Thus we can easily see that

1 — go2 — qo3 qo2 qo3
[I“Qo]_1 = do1 1 — qo1 — qo3 q03 /(1 — qo1 — qo2 — 403)-
qo1 q02 1 — qo1 — qo2

Hence we have the followings.

E[So] = 1/(1 = go1 — Qo2 — 903), (4.3)

go1m1 + gozns + (1 — qo1 — qo2)n2
1 — qo1 — go2 — o3 '

go1h1 + gozh. + (1 — go1 — qo2)h2
1 - go1 — go2 — qo3

E[Oo] = (4.4)

E[Uo] = (4.5)

From the expression of E[Sy|, we see that the control limits should be
the same for the two schemes to make the ANSS’s the same. Let ny and
ho be the sample size and the sampling interval used for the FSR scheme,
respectively. We have the same ANOS’s when the process is in control if
ng = go1m1 + goan. + (1 — go1 — qo2)na2,
that is,

e — (qo1 + go2)n1 + (1 — go1 — go2)n2 ifcs 2 ¢
0 goin + (1 — go1)n2 ifcg < ¢
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- pnlnl + (1 - pn| )n2, (46)

where p,, = 2{®(cs) — 0.5}. We have the same ATS’s when the process is in
control if kg = gorh1 + gozhs + (1 — go1 — qo2)he,

that is,
h = (qo1 + qo2)h1 + (1 — qo1 — qoz)he ifcs < ¢
gorhy + (1 — go1)he ifeg > ¢
= pp, h1 + (1 = py, ) ha. (4.7)
For n; < n < ny, we have from (4.6)
o=@ | 2" ! (4.8)
5= 2(1’12 - nl) 2 . '
Also, for hy < h < hy, we have from (4.7)
_ ho — ho 1
=@ | ———=_ 4 2|, 4.9
“ [2(hl “hy) T 2] (4.9)

In the VSR scheme, we find the chart parameters {n;, ng, h;, hy} which
minimize the adjusted ATS. This nonlinear optimization problem was solved
by the generalized reduced gradient procedure using finite difference approx-
imations to the partial derivatives (see Lasdon et al.(1978) for details of this
method). Because the sample sizes n, and n, are integers, we found the
optimal set of chart parameters with the sample sizes fixed at each possible
combinations of n; and n, with a range of values for n, < n; < ny < n;. We
select

6 =0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0
n, =1, n; = 100
h,=01, h =10

R,(5) _
b
r = 100, 1000, 10000

a
-=0,5, 10
b

i C:3, n0:3, 5, 10, h():].

ré

For the given parameters above, we obtain the op'timal chart parameters
and the adjusted ATS in Table 1 to Table 3. In each cell of the table the upper
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left number denotes the ATS by the VSR scheme, the upper right number in
parentheses denotes the ATS by the FSR, the lower left integers in parentheses
are (n;, ny), and the lower right numbers in parentheses are (A, hy). The é
values not listed in the table indicate that the optimal design for the given 6
is the FSR. When n; = n, it indicates that the optimal design is the VSI.
For each set of (ng,r, %), we see that the VSR scheme performs significantly
better than the FSR for small and moderate shifts, and the predominance
of the VSR decreases as the shift increases. The optimal chart parameters
calculated are almost the same for different set of (r, %), whereas those are
considerably different for ny and §. The common parameter values are listed
at the bottom of each column. In every case except for ng=3 and 6=3, the
optimal h, is selected as the minimum sampling interval 0.1.

We also see that the VSR is more useful for small ny than large one. For
ne=3, the optimal design is the VSR for § < 1.5, the VSI for §=2 and 3, and
the FSR for § > 4. For ny=5, the optimal design is the VSR for § < 1.5, the
VSI for 6§ = 2, and the FSR for § > 3.0. For ny=10, the optimal design is
the VSR for § < 1.0, the VSI for § = 1.5, and the FSR for § > 2.0. No case
shows that the optimal design is the VSS.

Table 1. Adjusted ATS and optimal chart parameters of the VSR scheme
for n0:3, C:3, h():].

(r.7) [}

' 05 10 15 2.0 30
(100.0) | 15.038(63.528) | 2.232(9.558) | 1.017(2.466) | 0.665(0.995) | 0.523(0.524)
(1,30)(1.69.0.1) | (2.10)(1.49,0.1) | (2,5)(1.19.0.1) | (3,3)(1.10,0.1) | (3,3)(1.004,0.83)
(100.5) | 16.621(60.897) | 2.427(10.046) | 1.091(2.563) | 0.702(1.032) | 0.540(0.541)
(1,30)(1.69,0.1) | (2,10)(1.49,0.1) | (2,5)(1.18,0.1) | (3,3)(1.10,0.1) | (3,3)(1.004.0.83)
(100,10) | 18.205(75.966) | 2.621(10.534) | 1.164(2.660) | 0.739(1.069) | 0.556(0.558)
(1,30)(1.69.0.1) | (2,10)(1.49,0.1) | (2,5)(1.18,0.1) | (3,3)(1.10.0.1) | (3,3)(1.004.0.83)
(1000.0) | 13.545(60.551) | 2.051(9.294) | 0.967(2.414) | 0.645(0.976) | 0.514(0.515)
(1,29)(1.70,0.1) | (2.9)(1.50,0.1) |(2,5)(1.19,0.1) | (3,3)(1.10,0.1) | (3.3)(1.004.0.83)
(1000,5) | 13.704(61.158) | 2.071(9.343) | 0.974(2.424) | 0.649(0.979) [ 0.515{0.517)
(1,20)(1.70,0.1) | (2.9)(1.50,0.1) |(2,5)(1.19,0.1) | (3,3)(1.10,0.1) | (3,3)(1.004,0.83)
(1600.10) | 13.863(61.765) | 2.091(9.391) | 0.982(2.433) | 0.653(0.983) | 0.517(0.519)
(1.29)(1.70,0.1) | (2.10)(1.49.0.1) | (2,5)(1.19.0.1) | (3,8)(1.10,0.1) | (3.3)(1.004.0.83)
710000,0) | 13.395(60.224) | 2.033(9.268) | 0.962(2.409) | 0.643(0.974) | 0.513(0.514)
(1,29)(1.70,0.1) | (2.9)(1.50,0.1) |(2,5)(1.19,0.1) | (3,3)(1.10,0.1) | (3,3)(1.004,0.83)
(10000.5) | 13.411(60.284) 2.035(9.273) 0.963(2.409) | 0.644(0.974) 0.513(0.515)
(1,29)(1.70.0.1) | (2.9)(1.50,0.1) |(2,5)(1.19.0.1) | (3,3)(1.10,0.1) | (3.3)(1.004,0.83)
(10000,10 | 13.426(60.345) | 2.037(0.277) | 0.964(2.411) | 0.644(0.974) | 0.513(0.515)
(1,29)(1.70,0.1) | (2,9)(1.50,0.1) |(2.5)(1.19.0.1) |(3.3)(1.10,0.1) | (3.3)(1.004.0.83)
(1,30)(1.70,0.1) | (2.10)(1.50,0.1) | (2.5)(1.20.0.1) | (3.3)(1.10,0.1) | (3.3)(1.004,0.83)

191
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Table 2. Adjusted ATS and optimal chart parameters of the VSR scheme
for ng=>5, ¢=3, hy=1

(r.%) 6
0.5 1.0 1.5 2.0

(100,0) | 8.28(36.29) 1.36(4.22) 0.72(1.12) | 0.56(0.60))
(2,31)(1.64,0.1) | (4,12)(1.33,0.1) | (4,6)(1.10,0.1) | (5,5)(1.03,0.1)

(1005) | 0.18(39.58) 1.49(4.44) 0.77(1.17) 0.58(0.63)
(2,31)(1.64,0.1) | (4,13)(1.33,0.1) | (4,6)(1.10,0.1) | (5,5)(1.03.0.1)

(100,10) | 10.07(42.92) 162(4.67) 0.82(1.22) 0.61(0.66)
(2,32)(1.63,0.1) | (4,13)(1.33,0.1) | (4,6)(1.10,0.1) | (5,5)(1.03.0.1)

(1000,0) | 6.78(33.23) 1.18(4.02) 0.67(1.07) 0.53(0.58)
' (2,29)(1.65,0.1) | (4,12)(1.33.0.1) | (4,6)(1.10,0.1) | (5,5)(1.03,0.1)
(1000,5) | 6.88(33.57) 1.20(4.04) 0.68(1.08) 0.54(0.58)
(2,29)(1.65,0.1) | (4,12)(1.33,0.1) | (4.6)(1.10,0.1) | (5,5)(1.03.0.1)

(1000,10) | 6.97(33.90) 1.21(4.06) 0.68(1.08) 0.54(0.58)
(2,30)(1.64,0.1) | (4,13)(1.33,0.1) | (4,6)(1.10,0.1) | (5,5)(1.03.0.1)

(10000,0) | 6.63(32.93) 1.17(4.00) 0.67(1.07) 0.53(0.58)
(2,29)(1.65,0.1) | (4,12)(1.33,0.1) | (4,6)(1.10,0.1) | (5.5)(1.03,0.1)

(10000,5) | 6.64(32.97) 1.17(4.00) 0.67(1.07) 0.53(0.58)
(2,29)(1.65,0.1) | (4,12)(1.33,0.1) { (4.6)(1.10,0.1) | (5.5)(1.03.0.1)
(10000,10) 6.65(33.00) 1.17(4.00) 0.67(1.07) 0.53(0.58)
(2,29)(1.65,0.1) | (4,12)(1.33,0.1) | (4,6)(1.10.0.1) | (5,5)(1.03,0.1)
(7,30)(1.65,0.1) | (4,12)(1.33,0.1) | (4,6)(1.10,0.1) | (5,5)(1.03.0.1)

Table 3. Adjusted ATS and optimal chart parameters of the VSR scheme
for TL():].O, 623, h():l

{r.%) s

0.5 10 15
{100,0) | 4.170(14.890) | 0.881(1.449) | 0.589(0.612)
(7,38)(1.56,0.1) | (9,14)(1.12,0.1) | (10,10)(1.02,0.1)
(100,5) | 4.633(16.173) | 0.962(1.537) 0.624(0.647)
(7,39)(1.56,0.1) | (9,14)(1.12,0.1) | (10,10)(1.02,0.1)
(100,10) | 5.091(17.455) | 1.042(1.626) 0.659(0.681)
(6,39)(1.53,0.1) | (9,15)(1.11,0.1) [ (10,10)(1.02,0.1)
{1000,0) | 2.685(12.582) | 0.717(1.289) | 0.527(0.549)
(7,36)(1.57,0.1) | (9,16)(1.11,0.1) | (10,10)(1.02,0.1)
(1000,5) | 2.732(12.710) | 0.725(1.298) 0.530(0.553)
(7,36)(1.57,0.1) | (9,16)(1.11,0.1) | (10,10)(1.02,0.1)
(1000,10) | 2.778(12.838) | 0.733(1.307) | 0.534(0.556)
(7,37)(1.56,0.1) {(9,16)(1.11,0.1) [ (10,10)(1.02,0.1)
{10000,0) | 2.536(12.351) | 0.700(1.273) | 0.521(0.543)
(7,36)(1.57,0.1) |(9,16)(1.11,0.1) [ (10,10)(1.02,0.1)
(10000,5) | 2.540(12.364) | 0.701(1.274) 0.521(0.543)
(7,36)(1.57,0.1) { (9,16)(1.11,0.1) [ (10,10)(1.02,0.1)
{10000,10) | 2.545(12.376) | 0.702(1.275) | 0.521(0.544)
(7,36)(1.57,0.1) | (9,16)(1.11,0.1) { (10,10)(1.02,0.1)
(7.37)(1.56,0.1) | (9,15)(1.11,0.1) | (10,10)(1.02,0.1)
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5. SENSITIVITY ANALYSIS

It was shown in the previous section that the optimal chart parameters
are considerably different for the amount of shift §. We need to examine
the performance of the VSR scheme for wide range of § values when the
chart parameters selected for a specific § value are used. This was done
by obtaining the adjusted ATS for various § values by using the optimal
chart parameters selected for a specific § value and compare them with the
optimal adjusted ATS. These values are listed in Table 4. In the table FSR
indicates the adjusted ATS calculated by the FSR scheme, VSR indicates
the adjusted ATS by using the optimal chart parameters for the shift §, and
VSR(6) indicates the adjusted ATS by using the optimal chart parameters
selected for the shift é.

We see that the adjusted ATS’s are considerably larger than the optimal
one especially for § values less than the specific § for which the chart param-
eters are selected. All the ATS’s are significantly smaller for small shift and
moderately larger for large shift than the FSR scheme. This characteristic
becomes more clear as the amount of shift becomes smaller for which the
optimal chart parameters selected. It would be desirable to use chart param-
eters designed for small amount of shift such as §=0.5 or 1.0. Then we can
expect the overall performance of the VSR will be better than the FSR. In
case where small shift may not be important to detect, we recommend to use
chart parameters designed for the shift which is important to detect. Suppose
that we want E(Sy) = E(Uy) = 370.4, E(Uy) = 5E(Sp) and the mean shift
6 = 1.0 is important to detect. Then we choose ¢=3, ny=5, hy=1, and the
chart parameters of the VSR scheme as those selected for §=1.0 rather than
6=0.5, that is n;=4, ny=12, h;=1.33, hy=0.1 with threshold limits c¢sg=1.53
and ¢;=1.11 calculated by (4.8) and (4.9), respectively .

6. CONCLUSIONS AND REMARKS

The VSR scheme is proposed in this paper to improve the sensitivity of the
X chart for small and moderate amount of the shift in the mean. In evaluating
the effectiveness of control charts, the ATS adjusted by the sampling cost is
used instead of the ATS alone. The adjusted ATS takes into account the time
to signal as well as the increased sampling cost. The use of the adjusted ATS
makes it possible to choose appropriate sample size and sampling intervals,
which was not possible. in the statistical design of control charts. Also it
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was made possible to consider the statistical performance of control charts,
which was not possible in the economic design of control charts. The VSR
scheme is a combination of the two separate schemes, the VSS and the VSIL
The numerical comparison shows that the VSI is more useful than the VSS.

Thus when only one scheme is used for administrative convenience, the VSI
is preferred.

Table 4. The adjusted ATS by using the optimal chart parameters
determined for a specific §

n0:3

) 05 | 1.0 | 15| 20| 30| 4050
FSR [61.1589.343(2.424|0.979(0.517|0.502(0.502
VSR |13.711}2.071|0.975|0.649{0.51510.502|0.502

VSR(0.5)[13.711|4.184|2.037{1.278|0.902|0.835|0.819
VSR(1.0)|26.662|2.071{1.071|0.838{0.739|0.727{0.726
VSR(1.5){41.182|2.853{0.975{0.710|0.603|0.592{0.592
VSR(2.0) [54.581(6.041|1.247|0.649/0.549|0.547|0.547
VSR(3.0)[60.723|9.054(2.289{0.930{0.515|0.502|0.502

’no:5

6 05 | 10|15 |20 |30/ 40 ]| 50
FSR [33.569{4.040|1.077|0.581|0.503|0.503|0.502
VSR | 6.875|1.197{0.677[0.536|0.515(0.503]0.503

VSR(0.5)| 6.875 |1.999|1.136|0.906{0.807|0.795]0.794
VSR(1.0){13.552{1.197/0.752{0.672|0.652|0.651|0.650
VSR(1.5)[24.526(1.765|0.677|0.566|0.548|0.547|0.547
VSR(2.0){30.714(2.84110.745|0.536{0.517]0.516|0.516

n0:10

6 05 | 10|15 20| 30| 40| 5.0
FSR |12.710|1.298(0.553{0.508{0.505{0.504}0.503
VSR | 2.732{0.725|0.531|0.508{0.505|0.5040.503

VSR(0.5)] 2.732 (0.930{0.7830.759/0.756 |0.755|0.754
VSR(1.0)] 5.891 [0.725[0.568]0.557|0.554|0.5530.552
VSR(1.5)[11.072{0.927{0.531|0.517{0.514|0.513]0.512
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APPENDIX

When the process is in-control, the statistic does not depend on the sample
size. Thus we do not need to consider the sample size. The only thing we
have to consider in obtaining s; and E(7) is the sampling interval. First we
derive the distribution of Sy and Hg, 1.

P(SOZO) :P(U0<h2)

=1—e,
For z > 1,
P(So =2,H,41 = hy)
= zif{'cauke only z number of h; intervals and z — 1 — = number of h; intervals
f;:ron Hyto H, H,;1 = hy, and hyz + hy(z — ) < Up < hy(z + 1) + ho(z — 2)}
a-1 . ex
= pa, ; ( T : )pil (1 =pn) 7" /,:li:()j( ey
= py, 22—:1 ( z ; 1 >p21(1 S [C—A{hlr+h2(z-z),} _ e—A{Iz1(1+1)+h2(z—1)}]
r=0

z—1
—Ahaz - z—-1 - -h)\ % z—1-r
= Phn, € A2 (1_6 Ah‘) E :( - ){phle i hz)} (1_ph1) !
=0

z—-1
— ph]e—/\hg(l . e—z\hl) [e—Ahg {ph]e_A(hl_h2) + 1-— Ph,}]
=pr e (1 —e Mgl (A.1)

Similarly, .
P(So =2, Ho41 = hy) = (1 —p,)e M (1 —e7*2)g77 1, (A.2)

Let R, denote the state at the sampling time immediately before the shift
(i.e. sampling time So), then s} = (P(Ro = 1), P(Rg = 2), P(Ry = 3)).

P(Sp =2z,Ry=1) = P(So =2, Hy1 = h1,Nyy1 = n1)
= P(So = 2|H.41 = h1, Noy1 = ny)P(H, 41 = by, Noyy = my)
= g1 P(So = z|H,41 = h1)
= gne (1 - e Mg
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P(SO = Z,RO = 2) = P(SO = ZIHz+l = hnNz+l = n*)P(Hz+1 = hnNz+1 = n*)
= qo2 P(So = z|H,4+1 = h.)

| gquee (1 —eM)pt if e > ¢,

| qoze (1 —eM)BEl ifeg < .

P(SO = Z,Ro = 3) = P(SO = lez+1 = hZ,Nz-G-l = n?)P(Hz+l - h2,Nz+l - n2)
= (1 — go1 — g02)P(So = 2|H, 41 = h2)
= (1 — go1 — goz)e *? (1 — e )37 1.
Then

S1(1) = P(Ro=1)

= P(So=0,Ry=1)+> P(So=zRo=1)

z=1

o0
— 0 + Zq(ne—z\hz (1 _ e—/\hl)ﬂz—l
z=1

= que M (1—e1)/(1-8).

51(2) = P(Ro=2)

= 0+2P(So=z,Ro=2)
z=1

Zqoge"\h"’(l —e M)l if g > ¢

z=1 :

Zqoze—’\h"(l —e M)B ifeg < ¢

z=1

_ goee M2(1 — e ?2)/(1 - B) ifes > ¢,
que—'\hz(l - 6—'\'” )/(1 - ,3) lf cg < Cy.

= P(Sg=0,Ry=3)+ > P(So=2z,Ro=3)

z=1
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= P(So=0)+ (1-qo1 — qo2)e (1 — e M2)3*"!
z=1

= 1—e ™ +(1-qgn — qoz)e (1 — e *2)/(1-B).

Next we consider the marginal probability of Hg,+1.

P(Hsyr1 = hi) = P(So=0,Hgy41 = h1) + 3 P(So = 2, Hgy1 = 1)

z=1

=0 + thle——/\hz(l _ e—/\hl ),32_1
z=1

B phle—,\hg(l — M)
= T—5 ,

(A.3)

e—/\hz(l _ e—/\hl)
1-p

P(Hsy41 = hy) = |1 - P |- (A.4)

The conditional expectation E(7|Hg,,; = h) is obtained by Duncan(1971) as

1—(1+Ah)e

E(T|H50+l = h) = A(l _ e_,\h)

Thus by using the conditional expectation of T and marginal probability of
Hg,41, we have

1 — (14 Ahy)e M e *2(1 — e )

Bl = —a=emy 1-5 ™
1 — (1 + Ahy)e 2 ] e M1 — e Ah)
A(l—-e—’\hZ) 1—'ﬂ phl
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