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Abstract

This is primarily an expository paper that presents several non-
parametric procedures for testing exponentiality against certain mono-
tonicity properties of the mean residual life function. In addition to
the monotone behavior of mean residual life function, tests against
the trend change in such function attract a great deal of attention of
late in reliability analysis. In this note, we present some of the known
testing procedures regarding the behavior of mean residual life func-
tion. These tests are also compared in terms of asymptotic relative
efficiency and empirical power against a few alternatives. The tests
based on incomplete data are also briefly discussed.
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1. INTRODUCTION

Let X be a nonnegative absolutely continuous random variable(often de-
scribing the life of a component)with the life distribution F(z) and let F(z) =
1 — F(z). The conditional expectation

m() =E(X —t|X >t) = /l°° F(a)de [F(t)

is defined as a mean residual life function. It is called the expectation of
life at t in survival analysis. The concept of mean residual life has been
investigated extensively in the literature and find vast applications in the
various areas of practical interest. See, e.g., Hollander and Proschan(1984),
Kotz and Shanbhag(1980), Guess and Proschan(1988), and the bibliography
therein.

The mean residual life was first introduced by Waston and Wells(1961).
They use the mean residual life for studying the concept of burn-in. Since
then the mean residual life has been used not only for parametric modeling,
but also for nonparametric modeling. Hall and Wellner(1981) discuss para-
metric uses of the mean residual life. Based on the behavior of mean residual
life function, several nonparametric classes of life distributions have been de-
fined and studied by many reliability scientists. Barlow and Proshcan(1965)
introduce the decreasing mean residual life(DMRL) class which consists of
life distributions whose mean residual life functions are non-increasing, and
they note that DMRL class arises naturally in reliability theory. The class
of life distributions with non-decreasing mean residual life function is called
increasing mean residual life(IMRL). Besides the class of life distributions
with m(t) < m(0) for ¢ > 0 is defined as new better than used in expec-
tion(NBUE). When m(t) > m(0) for ¢ > 0 the class is called new worse than
used in expectation(NWUE).

The DMRL class models aging that is adverse. That is, the older a DMRL
unit is, the shorter is the remaining life of the unit on the average. Regarding
IMRL class, Morrison(1978) mentions that the IMRL distributions are found
to be useful as models in the social sciences for the lifelengths of wars and
strikes. Brown(1983) mentions the areas in which the IMRL class plays an
important role and studies approximating IMRL distributions by exponen-
tials.

Guess, Hollander and Proschan(1986) introduce two nonparametric classes
of life distributions which show the trend change in mean residual life. One
such class consists of those with increasing initially, then decreasing mean
residual life and is called IDMRL. The other class is called DIMRL, with
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decreasing initially and then increasing mean residual life. The lifelengths of
humans can be reasonably considered as IDMRL model. High infant mortality
explains the initial IMRL phase. Aging and deterioration explain the later
DMRL state. More examples and discussions for such trend changes in mean
residual life are given in Guess(1984).

This article presents several nonparametric methods for testing the null
hypothesis that the underlying life distribution is exponential against the al-
ternative hypothesis that the underlying life distribution follows a certain
monotonicity property of the mean residual life function. In Section 2 several
tests for detecting monotone behavior of mean residual life are discussed. Sec-
tion 3 considers testing for trend change in mean residual life. Brief discussion
for the case of censored data is given in Section 4.

2. TESTS FOR MONOTONE MEAN RESIDUAL LIFE

Let X;, -+, X, be a random sample from F and we let F,, to be the em-
pirical distribution function obtained from the sample. Based on the random
sample, the problem of our interest is to test

Hq : F is the exponential distribution
(i.e. F(z) = exp(~z/p),z > 0, with x unknown)
against

H, : F is DMRL, but is not exponential.
Hollander and Proschan(1975) Test

The first nonparametric method dealing with this problem is proposed by
Hollander and Proschan(1975)(HP(1975)). Their test statistic is motivated
by considering the following parameter as a measure of deviation. Let

A(F) ://mﬁ(s)ﬁ(t)(m(s)—m(t))dp(s)dp(t). (2.1)

Under Hy, A(F) = 0 and under H;, A(F) > 0 assuming that F' is contin-
uous. The integrand of A(F) is a weighted measure of the deviation from Hy
towards H,, and A(F) is an average of this deviation. The weights F(s) and
F (t) represent the proportions of the population still alive at s and t, respec-
tively and thus provide comparisons concerning the mean residual lifelengths
from s and t, respectively. Substituting the empirical distribution function
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and deriving an asymptotically equivalent statistic to A(F,), HP(1975) ob-
tain

V=n"*Y Ci.Xpu, (2.2)
i=1
4 1 1 1 1
C'in = §Z3 —_ 47’112 + 3n2z - 57’1,3 + 5”2 —_ 522 + 6'&, (23)
where X (1) < -+ < X(,) are the order statistics of the sample and X is the

sample mean. From (2.2) and (2.3), V can be approximated by

i ]
Ventyo JI(E)X(,»), (2.4)
i=1
where
4 1
Ji(u) = §u3 — 4u® + 3u — 3

HP(1975) use V* = V/X, where V is defined in (2.4), as their test statis-
tic. V" is scale invariant and is a L-statistic. Thus, by applying the L-
statistic theory the asymptotic normality of the test statistic V* is estab-
lished. HP’s(1975) large sample a-level test for H, versus H, is to reject
H, in favor of H, if (210n)Y/2V* > z,, where z, is the upper a-quantile of
standard normal distribution. Analogously, Hy is rejected in favor of H L
F is IMRL, but is not exponential if (210n)!/2V* < —z,. The consistency
of such tests follows from the fact that A(F) > (<)0 under H,(H,) if F is
continuous.

Bergman and Klefsjo(1989) Test

Bergman and Klefsjo(1989)(BK(1989)) develop a family of test statistics,
intended for testing a DMRL, which includes the test statistic by HP(1975) as
a special case. They generalize the idea by HP’s(1975) by using the weights
Fi(s)F*(t), instead of F(s)F(t), where j and k are positive integer values.
In this case, the measure of DMRL-ness of F is

Bu(F) = [ [ FI)FH @) m(s) = m(0)dF (s)dF (1)

The asymptotic normality of the test statistic A;,(F,)/X is obtained by
using the L-statistic theory and its efficacy values are calculated for several
DMRL alternatives.
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Aly(1990) Test

As a measure of deviation of F' from Hy in favor of H;, Aly(1990) considers
the parameter

() = [ h)F () (23)

where

h(y) = (1 — y)(1 + log(1 — y)), 0<y<1

It is shown that r(F') is equivalent to

r(F) = [ (m(0) = m(e)dF ().

r(F) is motivated by the fact that if F is DMRL, F(t)m’(t) < 0 for all t and
it turns out that r(F) is also a measure of deviation of F in favor of NBUE
alternatives. The proposed test statistic is based on

r(F,)=(14n"! Zcmx(i))/x,
i=1

where C,, = —logn and C;,, = log((n —i+ 1)/n)((n— i+ 1)/(n —1))* i =
1,---,n — 1. The asymptotic null distribution of A = n'/?r(F,) is proved to
be a standard normal distribution. Thus, Aly’s(1990) test is to reject Hy in
favor of H, if A > z, and is consistent against all continuous NBUE(and thus
against all continuous DMRL) alternatives.

Bandyopadhyay and Basu(1990) Test
The test is motivated by the observation that F belongs to the class of
DMRL(IMRL) distributions if and only if
m(ka) > (<)m(a)
for all 0< k < 1 and all z > 0. They consider the parameter

B(F;k) = /0°° F(2)F(kz)(m(kz) — m(z))dF (z). (2.6)
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B(F; k) measures the deviation of Hy towards H,(H,). Under Hy, B(F;k) =
0 and under H,(H,), B(F;k) > (<)0. The weights F(z) and F(kz) in the
integrand of (2.7) represent the proportions of the population still alive at z
and kz, respectively. A natural test statistic is obtained by replacing F of
(2.7) by F,. Instead of B(F,; k), Bandyopadhyay and Basu(1990)(BB(1990))
use the following U-statistic which is asymptotically equivalent to B(F,;k).

Ui(k) = (n(n — 1)(n — 2))7" 3" & (X, X, X4), (2.7)

where }° is the sum taken over all permutations (3, j, k) of 3 distinct integers
chosen from 1,---, n, n > 3, with

®.(a,b,c) = (a—ke)I(a — ke)I(b—c)— (a—c)I(a— e)I(b~ kc)

and I(z) = 1 or 0 according as z > 0 or z < 0. To make the test statistic
scale invariant, they use

Un(k) =UX(k)/X.

The asymptotic normality of U, (k) is established by using the U-statistic
theory and the test is proved to be consistent against DMRL alternatives.

Ahmad(1992) Test

The test proposed by Ahmad(1992) is motivated by a simple observation
that if the mean residual life function, m(t), is differentiable and m(t) is
decreasing, then m'(t) = dm(t)/dt < 0for ¢t > 0. Let f denote the probability
density function corresponding to F and let v(z) = [* F(u)du. Then the
deviation of F' from H, towards H; can be measured by the parameter

§(F) = /0°°[F2(x)—f(x)y(x)]dx
= /Ooo [22F(z) — v(z)]dF (), (2.8)

where the second equality is obtained by integration by parts assuming that
lim zF*(z) = 0. The integrand in the middle expression of (2.8) is posi-

I — 00

tive if and only if m(¢t) is decreasing. Thus, the large values of §(F) would
support H; and 8(F) = 0 if and only if F is an exponential distribution.
Ahmad’s(1992) test statistic, §(F,), turns out to be an U-statistic and has
the following expression.
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8(F,) = n'QEn:i@Xi - X)I(X; — X.),

i=1j=1

where I(a) = 0 if @ < 0 and I(a) = 1 if @ > 0. The asymptotic null
distribution of U = n!/2§(F,) is normal with mean 0 and variance of }.
Thus, Ahmad’s(1992) large sample test for Hy versus H, is to reject Hy in
favor of H; if V3U > z,. For H, versus H i, Hy is rejected in favor of H 1 if
V3U < —2z,.

Efficiency Comparison of the Tests

Let V, A, and U denote HP(1975) test, Aly(1990) test and Ahmad(1992)
test, respectively. To compare these tests in terms of Pitman asymptotic rel-
ative efficiencies(ARE), we consider the following three DMRL distributions.

Fi(z) = exp(—(z + $62%)),0 > 0,z > 0 : Linear Failure Rate
Fy(z) = exp(—(z +8(x + e * — 1))),6 > 0,z > 0 : Makeham
Fi(z) = exp(—x%),8 > 1,2 > 0 : Weibull

Aly(1990) and Ahmad(1992) show that AREr, (A4,V)=1.219, ARE,(A,V)=
1.0714, AREy,(A,V)=1.4272, AREy, (U,V) =2.63, ARER,(U,V) =4.2, and
ARE,(U,V)=1.43. From these ARE values we can obtain AREy, (A, U) =
0.463, AREy,(A,U)=0.255, and AREy,(A,U) = 0.998. This indicates that
both Aly’s test and Ahmad’s test outperform HP’s test and Ahmad’s test
works better than Aly’s test.

BB(1990) and BK(1989) present the ARE values of their tests with respect
to the HP’s test for various choices of k and (j, k). A few selected ARE values
for both tests are given in Table 1. Here V, B, and V;; denote HP(1975) test,
BB(1990) test and BK(1989) test, respectively.

Tablel. ARE Values of B, test and Vj; test with respect to V' test.

ARE (B, V) ARE(Vji,V)
Alternative | & 0.000001 001 0.05 (5,k) (2,1) (2,5 (3,4 (5,5)
Fy 0.914 0.913 0.911 0.988 0.548 0.598 0.506
F, 1.429 1.418 1.379 1.173  1.252 1.225 1.113
F3 2.058 1.948 1.734 1.213 1.398 1431 1.495

The values of k£ and (j, k) listed for both tests represent the cases for which.
BB test and BK test perform best against each alternative distribution. For
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BK test, V3, Vas and Vs tests are the best for Fy, Fy, and Fj alternatives,
respectively. BB(1990) shows that their test is the best for a very small value
of k, such as k£ = 0.000001. However, for practical considerations, one might
choose k = 0.01 or k = 0.05 since these tests achieve reasonably high ARE’s
with respect to other tests. Overall, BB test and BK test perform slightly
better than HP test against F, and F;, but not as effective as the HP test
against F.

3. TESTS FOR TREND CHANGE IN MEAN RESIDUAL LIFE

In this section we present some of the nonparametric tests for detect-
ing the trend change in mean residual life. Following the introduction of
IDMRL/(DIMRL) class by Guess, Hollander and Proschan(1986), a great deal
of researches have been focused on the trend change not only in mean residual
life but also in failure rate. Although many well-known life distributions show
monotone failure rate or mean residual life, there exist several situations for
which the monotonicity assumption does not model aging properties properly.
The lognormal, inverse Gaussian and Hjorth distributions are examples which
exhibit such trend changes. Klefsjé(1988) also considers the trend change in
the NBUE-property.

The following tests have been proposed for testing H, versus each of the
alternatives

H, : F is IDMRL(r), but is not exponential,
Hjz : F is IDMRL(p), but is not exponential.

Under H,, the turning point(at which the trend change of mean residual life
occurs), 7, is known and under Hj, the proportion, p, of the population that
dies at or before the turning point is known (knowledge of 7 itself is not
assumed).

Guess, Hollander and Proschan(1986) Test

For both H; and Hj, they consider the following parameter

nE) = /0 /Otﬁ(s)ﬁ’(t)[m(t) — m(s)|dF (s)dF (t)
+ /T°° /Tt F(s)F(t)[m(s) — m(t)]dF (s)dF(¢). (3.1)
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Against H; for which p is known instead of 7, we may use 7 = F~!(p). Under
Hy, T(F) = 0 and under H, or Hs, T(F) > 0. Thus, larger values of T(F)
support H, or H3. A natural test statistic to consider is T, = T'(F,). Let

AT F) = [P (r) 4 24 r) = £F5() + 1P ) = 3P () + 5]

and
, 1 1 1 1 1 1
olp)=—-=p"+-p' -+ P — o+ =

15 6 6 10 30 210’
where u = [;° F(z)dz is the population mean. To establish asymptotic nor-
mality of T, they use the differentiable statistical function approach of von
Mises(1947) and the L-statistic theory for H, and Hj, respectively. Against
H,, the IDMRL test is to reject Hy in favor of H, at the approximate level
aif T, = nl/ZT(F )/G > z, where 02 = 02(T, F,). The DIMRL test rejects
Hy in favor of Hj : F is DIMRL(7), but is not exponential at the approximate
level a if T, < —2z,. Against H 13, the IDMRL(p) test rejects Hy in favor of Hj
if V, = n2V*/o(p) > z,. If V,, < —2z,, then Hj is rejected in favor of Hj : F
is DIMRL(p), but is not exponential. Here V* =V, /X and V, is a modified
version of T'(F,). For more details see Guess, Hollander and Proschan(1986).

Aly(1990) Test

As a measure of deviation of F' from H, for each alternative, Aly(1990)
considers the parameter

ApF) = [ - 9)rE @)mE @) - (1 - 9))dF @)
- [ 1= w)m(P @) - (= Dl 0)62)

A(p; F) is motivated by the fact that F(t)m’(t) > Oon [0,7) and < 0 on [, 00)
under Hy and m’(t) = h(¢)m(t) — 1, where h(t) is a failure rate function. Note
that p = F (7). For testing H, against Ho, T1(7) = A(F,(7); F,)/X is used
as its test statistic. For testing H, against Hj, the proposed test statistic
T,(p) is obtained by A(p; F,)/X.

Aly(1990) also proposes a test for Hy versus

H, : F is IDMRL, but is not exponential.
( neither p nor 7 is known)
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The proposed test statistic is

Ts = sup n'?A(p;F,)/X

O<p<l1

~ max n'%(24(j) - A1))/X,
1 j<n-1

where for j =1,---,n

z<1——>(1+1g z“)(x Xo1)).

The percentage points of each test statistic are calculated by a Monte Carlo
simulation study to obtain the empirical critical values for each test.

Lim and Park(1995) Test

The test statistic for Hy versus Hj is motivated by Ahmad’s(1992) test
for DMRL alternatives, which uses the first derivative of mean residual life to
measure the DMRL-ness. Assuming that the proportion, p, of the population
that dies at or before the change point of mean residual life is known, the
following parameter is considered to derive the test statistic.

we) = [ e - @l [T 1) - e
- /OF_I(") 2(1 — 4F(2))dF (z)
+/:1(,,) 2(4F (z) = 1 + 2p)dF (z) — 2(1 — p)*F~(p)
= | eI (F@)aF @) - 20 - p2F )
where v(z) = [* F(u)du and

J(u) = 1—-4(1-u) for0<u<p
YT 40w -1+2p forp<u<l

The test statistic, L(F},), results in a L-statistic and its asymptotic normality
can be established by the L-statistic theory. Consequently, it follows that the
asymptotic null distribution of L, = (3n)V2L(F,)/X is a standard normal
distribution. Thus, a large sample approximate a-level test of H, versus Hj is
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to reject Hy if L, > z,. For testing Hy versus Hj, Hy is rejected if L, < —z,.
Lim and Park(1995) prove the consistency of the proposed test and conduct
Monte Carlo simulation studies to investigate the speed of convergence of the
test statistic to normality.

Empirical Powers of the Tests

To compare three tests discussed above, Lim and Park(1995) calculate
empirical powers of each test against lognormal alternatives for various choices
of n and p. The values in Table 2 are the empirical powers of three tests based
on 1000 simulations, each time with a sample of size n. We reproduce a part
of the results from Lim and Park(1995). Here V,, U, and T, denote Guess,
Hollander and Prochan'’s test, Aly’s test and Lim and Park’s test, respectively.

Table 2. Empirical Power of V,,, U,, T, test vs Lognormal Altenative
(# =0 and ¢ > 0) for o = 0.05.

n

test
a(p) statistic 10 20 40 60 80
0.4(0.9624) V., 0.391 0.330 0.348 0.460 0.566
U, 0.340 0.969 1.000 1.000 1.000
T, 0.893 1.000 1.000 1.000 1.000

0.8(0.4977) Va 0.304 0.211 0.167 0.151 0.185
U, 0.112 0.189 0.387 0.509 0.658
T, 0.042 0.259 0.596 0.780 0.888

1.6(0.0736) Va 0.539 0.737 0.957 0.990 0.998
U, 0.190 0.525 0.877 0.961 0.992
T, 0.615 0.818 0.946 0.994 0.995

Table 2 shows that all three tests are more effective in detecting the trend
change when p is very small and very large. When p is close to 0.5, all three
tests exhibit poor powers even when n is relatively large. The table also shows
that Lim and Park’s(1995) test achieves the hightest power among three tests
in most cases. More extensive tables are given in Lim and Park(1995).
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4. GENERALIZATIONS TO CENSORED CASE

This section discusses the tests based on randomly right censored data.
The basic idea is to replace F' in the expression of the measure of deviation
of F' from Hy by the Kaplan-Meier estimator given in (4.1) below.

Let Xy, -, X, be independent, identically distributed (i.i.d.) according
to a continuous life distribution ¥ and let Y, ---,Y, be i.i.d. according to a
continuous censoring distribution H. Here we assume that X's are indepen-
dent of Y’s. The censoring distribution H is assumed to be unknown and is
treated as a nuisance parameter. In the randomly right censored model, the
pairs (Z;,8;), i = 1,---,n, where Z;, = min(X,,Y;) and 6; = 1 if Z, = X,, or
=0if Z, = Y, are observed.

In the randomly censored model, Kaplan and Meier(1958) propose the
product limit estimator

F(t) = Mz <o ((n ~ )/ (n — i + 1)), t €0, 2w, (4.1)

where Zg) = 0 < Z3) < -+ < Z(n) are the ordered Z’s and 6@y 1is the
6 corresponding to Z;y. Here we treat Z(») as an uncensored observation,
whether it is uncensored or censored. When censored observations are tied
with uncensored observations, we follow the standard convention of treating
the uncensored observations as preceding the censored observations.

Chen, Hollander and Langberg(1983)(CHL(1983)) generalize Hollander
and Proschan’s(1975) test to accomodate the randomly right censored data.
Their test statistic is derived by replacing F of (2.1) by the Kaplan-Meier
estimator, F,°. Lim and Park(1993)(LP(1993)) use Ahmad’s(1992) test to
generalize to the censored case and propose a new test, which is a competitor
to CHL(1983) test. LP(1993) obtain their test statistic by replacing F of
(2.6) by F,°. The asymptotic normality of each of CHL(1983) and LP(1993)
test statistics is established similarly by applying the techniques of Joe and
Proschan(1982) and Gill(1983). Both tests are proved to be consistent against
DMRL alternatives.

Table 3. Asymptotic Relative Efficiency of LP test with respect to CHL
test when H(z) = e, 2 >0

A 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F; 0914 0983 1.059 1.140 1.227 1.317 1.410 1.503 1.596 1.688
F, 1429 1.536 1655 1.782 1917 2.058 2.203 2349 2494 2.637
F3 2057 2212 2383 2566 2761 2964 3.172 3.382 3.591 3.798
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LP(1993) compare CHL(1983) test and LP(1993) test by calculating Pit-
man asymptotic relative efficiencies for three DMRL alternatives, which are
given in Section 2. For completeness of our presentation on comparision of
these two tests, we reproduce the results of LP(1993) in Table 3. Table 3
presents the ARE values of LP test with respect to CHL test when the cen-
soring distribution is exponential, H(z) = 1, for z < 0, H(z) = exp(—Az),
for z > 0. For this choice of H, the restriction A < 1 must be imposed to
establish the asymptotic normality of its test statistic. See CHL(1983) for
the detailed discussions on this condition.

Table 3 indicates that LP(1993) test compares favorably with CHL(1983)
test in all cases considered, except when A\ = 0.0 and A = 0.1 for F;. In
these cases the CHL test exhibits slightly higher efficiencies than the LP
test. It also shows that LP(1993) test has relatively higher efficiencies with
regard to CHL(1983) test for large values of A, which is the case when heavy
censoring occurs. Note that A = 0 corresponds to no cencoring. Bergman and
Klefsjo(1989)(BK(1989)) also discuss the censored case along with uncensored
case against DMRL alternatives. Their test is a generalization of CHL(1983)
test. Table 4 provides the values of ARE of BK(1989) test with respect to
CHL(1983) test when A =0.1, 0.5, and 0.9 and the censoring distribution is
exponential. When A =0(that is, no censoring), the ARE values of BK test
with respect to CHL test, which is equivalent to HP test, are given in Tablel.
These ARE values in Table 4 are computed using the squared efficacy values
of BK test given in BK(1989).

Table 4.ARE Values of BK test with respect to CHL test when
H(z)=e*,22>0

A=0.1 A=05 A=0.9

(4, k) Fy Fy Fy Fy Fy F Fy Fy F3

(2,1) 1.002 1.087 1.149 1.064 1.160 1.229 1.111 1.231 1.333

(2,5) 0.627 1.313 2.491 1.246 2.611 4.943 3.000 6.231 12.333

(3,4) 0.679 1.345 2.368 1.266 2.507 4.429 2.889 5.615 10.333

(5,5) 0.585 1.288 2.711 1.212 2.674 5.629 3.111 6.769 15.000

Table 4 indicates that when ) is small (light censoring occurs), CHL test
is more effective against F;. However, as A increases(the amount of censoring
increases) BK test outperforms CHL test in all cases. The same combinations
of (j, k) as in Table 1 are listed for illustrative purposes.
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