The characteristics of $p^+$-InGaAs layer implanted with oxygen

Oxygen이 주입된 $p^+$-InGaAs층에서의 compensation 특성

  • Published : 1997.11.01

Abstract

The dependence of compensation mechanism in $P^+$-InGaAs layer implanted with oxygen on the annealing temperatures was investigated. The oxygen implantation was performed for electrical isolation. The conductivity was controlled by damage related traps below $500^{\circ}C$. For the temperature of 500 to $600^{\circ}C$, oxygen began to show the chemical effect of compensating the acceptors due to activation and type conversion (plongrightarrown-type) occurred at $600^{\circ}C$. This indicates that the defects generated by the chemical activity of oxygen increased with increasing annealing temperature, where activation energy of 24.2 meV was obtained. It is attributed to the formation of native defects, such as In interstitials, acting as shallow donor in InGaAs. Above $600^{\circ}C$, the interstitial Be atoms become reactivated and the n-type conductivity decreases.

전기적 고립(isolation) 효과를 알아보기 위해 $P^+$-InGaAs층에 oxygen을 이온 주입하 여 annealing 온도에 따른 compensation mechnism을 조사하였다. $500^{\circ}C$이하에서는 전도도 가 손상에 관련된 트랩들에 의해 지배되며 500~$600^{\circ}C$영역에서는 oxygen의 활성화로 acceptor를 compensate시키는 화학적 효과를 나타냈으며 특히 $600^{\circ}C$에서 type conversion(p $\longrightarrow$n-type)이 일어났다. 이는 annealing온도가 증가함에 따라 oxygen의 화학적 작용에 의해 생성된 donor로 작용하는 결함들의 증가에 기인하며, 이때 면 저항의 활성화 에너지는 24.2meV로 shallow donor로 작용하는 In interstitial과 같은 native defect들이 형성되기 때 문이라 생각된다. Type conversion이 일어난 $600^{\circ}C$ 이상의 영역에서는 이온 주입에 의해 형 성된 interstitial Be의 재활성화로 인해 n형 전도도가 감소하는 경향을 보였다.

Keywords

References

  1. Tech. Dig. OFC'93 S. Hanatani;H. Nakamura;S. Tanaka;C. Notsu;H. Sano;K. Isida
  2. IEEE Photon. Technol. Lett. v.8 I. Watanabe;M. Tsuji;K. Makita;K. Taguchi
  3. IEEE Electron Device Lett. v.10 J. P. Boos;W. Kruppa;B. Molnar
  4. Nucl. Instr. and Meth. in Phys. Res. v.B96 Ch. Buchal
  5. J. Appl. Phys. v.66 S. J. Pearton;C. R. Abernathy;M. B. Panish;R. A. Hamm;L. M. Lunardi
  6. Appl. Phys. Lett. v.55 S. J. Pearton;W. S. Hobson;U. K. Chakrabarti
  7. J. Appl. Phys. v.64 M. V. Rao;R. S. Babu;H. B . Dietrich;P. E. Thompson
  8. J. Electron. Mater. v.21 C. O. Jeong;S. J. Kim;B. Y. Choe
  9. Fundamentals of Semiconductor Theory and Device Physics S. Wang
  10. J. Appl. Phys. v.52 L. A. Christel;J. F. Gibbons
  11. Appl. Phys. Lett. v.62 Ph. Krauz;E. V. K. Rao;H. Thibierge;J. C. Harmand
  12. Appl. Phys. Lett. v.52 S. J. Pearton;M. P. Lannuzzi;C. L. Reynolds, Jr.;L. Renolds
  13. Solid-State Electronics v.20 J. P. Donnelly;C. E. Hurwitz