초고집적회로를 위한 구리박막의 화학적 형성기술

Chemical vapor deposition of copper thin films for ultra large scale integration

  • 발행 : 1997.02.01

초록

0.25$\mu\textrm{m}$이하의 최소선폭을 같는 초고집적회로에 사용할 수 있는 구리박막의 형성기술 을 조사하였다. 본 실험에서는 측면박막 형성에 적합한 화학적 증착을 시도하였으며 (hfac)Cu(VTMS)(hexafluoroacetylacetonate vinyltrimethylisilane copper(I))로 명명된 금속 유기 화합물을 원료로 사용하였다. 구리박막의 형성은 TiN와 $SiO_2$모재 위에 이루어 졌으며, 형성 중에 모재의 온도와 증착용기 내 압력의 함수로서 집적회로 공정상 주요 변수인 박막 의 비저항, 박막의 증착선택도를 측정하였다. 구리박막은 모재온도 $180^{\circ}C$와 증착용기의 압력 0.6Torr의 조건에서 가장 좋은 전기적 성질을 보여 주었다. 이 조건에서 형성된 구리박막은 다결정 구조를 나타내었으며 구리박막의 증착속도는 120nm/min, 비저항은 0.25$mu \Omega$.cm, 평균거칠기는 15.5nm로서 0.25$\mu\textrm{m}$이하 선폭의 집적회로에서 요구되는 전기적, 재료적 사양에 근접한 구리박막을 얻었다. 또한 140-$250^{\circ}C$의 모재 온도 범위에서 TiN모재와 $SiO_2$모재 사 이에 뚜렸한 증착선택성이 관측되었다.

We have investigated the formation techniques of copper thin films which would be useful for sub-quarter-micron integrated circuits. A chemical vapor deposition technology has been tried for the better side wall formation of the thin films, and a metal organic compound, named (hface)Cu(VTMS) (hexafluoroacetylacetonate vinyltrimethylsilane copper(I)) was used as the precursors. We have deposited the copper thin films on TiN and $SiO_2$substrates. The film resistivity and deposition selectivity have been measured as functions of substrate temperature and chamber pressure. Best electrical properties were obtained at $180^{\circ}C$ of substrate temperature and 0.6 Torr of chamber pressure. Under the optimum deposition conditions, polycrystalline copper structures were observed to be grown, and the deposition rate of 120 nm/min was measured. The electrical resistivity as low as 0.25$mu \Omega$.cm, and the surface roughness of 15.5 nm were also measured. These are the suitable electrical and material properties required in the sub-quarter-micron device fabrication. Also, in the substrate temperature range of 140-$250^{\circ}C$, high deposition selectivity was observed between TiN and $SiO_2$.

키워드

참고문헌

  1. IEEE Electron Dev. v.42 no.10 M. Ono;M. Saito;T. Yoshitomi;C. Ohgue;H. Iwai
  2. Appl. Phys. Lett. v.61 A. Jain;J. Farkas;T.T. Kodas;K.M. Chi;M.J. Hampden-Smith
  3. Appl. Phys. Lett. v.60 S.L. Cohen;M. Lieher;S. Kasi
  4. Appl. Phys. Lett. v.59 S.K. Reynolds;C.J. Smart;E.F. Baran;T.H. Baum;C.E. Larson;P.J. Brock
  5. J. Phys. Ⅳ v.1 J.A.T. Norman;B.A. Muratore;P.N. Dyer;D.A. Roberts;A.K. Hochberg
  6. Thin Solid Films v.114 M.L. Green;R.A. Levy;R.G. Nuzzo;E. Coleman
  7. Proc. 7th IEEE VLSI Multilevel Interconnect Conference K.P. Cheung;C.J. Case;R. Liu;R.J. Schutz;L.F.Tz. Kwakman;R.S. Wagner;D. Huibergtse;H.W. Piekaar;E.H.A. Granneman
  8. Appl. Phys. Lett. v.57 K. Tsubouchi;N. Masu;N. Shigeeda;T. Matano;Y. Hiura;N. Mikoshiba
  9. J. Am. Chem. Soc. v.111 B.E. Bent;R.G. Nuzzo;L.H. Dubois
  10. Mater. Res. Soc. Proc. v.101 B.E. Bent;R.G. Nuzzo;L.H. Dubois
  11. Surf. Sci. v.1 L.H. Dubois;B.R. Zegarski;M.E. Gross;R.G. Nuzzo
  12. J. Appl. Phys. v.69 M.E. Gross;K.P. Cheung;C.G. Fleming;L.A. Heimbrook
  13. J. Vac. Sci. Technol. v.A9 M.E. Gross;K.P. Cheung;C.G. Fleming;L.A. Heimbrook;J. Kovalchick
  14. Surf. Sci. v.7 L.H. Dubois;B.R. Zegarski;C.T. Kao;R.G. Nuzzo
  15. J. Vac. Sci. Technol. v.11 no.6 A. Jain;T.T. Kodas;R. Jairath;M.J. Hampden-Smith
  16. International Electron Device Meeting 519 K. Yuda;K. Sera;F. Uesugi;I. Nishiyama;F. Okumura
  17. Chem. Mater. v.4 no.4 H.K. Shin;K.M. Chi;T.T. Kodas;J.D. Farr;M. Paffett
  18. Proc. Fund. Res. v.6 N.I. Cho;D.I. Park;Y.S. Kim
  19. Inorganic Chemistry v.31 no.3 H.K. Shin;K.M. Chi;T.T. Kodas;J. Farkas;M.J. Hampden-Smith;E.N. Duesler
  20. Chem. Mater. v.4 no.4 H.K. Shin;K.M. Chi;M.J. Hampden-Smith;T.T. Kodas;J.D. Farr;M. Paffett
  21. U.S. Patent 4,950,790 J.A.T. Norman