JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 6, 1997 183

Speedup of Sequential Program Execution
on a Network of Shared Workstations

Sung-Hyun Cho and Sung-Syck Jun

Abstract

We present competition protocols to speed up the execution of sequential programs on a network of shared workstations in the

background by exploiting their wasted computing capacity, without interfering with processes of workstation owners. In order to argue that

competition protocols are preferable to migration protocols in this situation, we derive the closed form solutions for the speedup of

competition protocols and migration protocols, and simulate both of protocols ,under comparable overhead assumptions. Based on our

analytic results and simulation results, we show that competitive execution is superior to process migration, and that competitive execution

can finish sequential programs significantly faster than noncompetitive execution, especially when the foreground load is sufficiently high.

1. Introduction

Networks of workstations(NOW)[1] have been increasingly
prevalent in almost every computing environment, but much of
computing capacity of a typical workstation has gone unused.
Since the middle of the 1980’s, many researchers have tried to
harness idle workstations, for example, NEST[2], Benevolent
Bandit[3], Stealth(4], Condor[5], Butler[6], REM[7], the V System
[8], and Utopia[9]. The goal of those systems is to execute
processes on remote idle workstations, maximizing the utilization
of workstations.

In this paper, we consider that all processes of workstation
owners are foreground processes regardless of their priority, and
that the other processes are background processes. We may dedi-
cate a subset of workstations in a NOW to execute background
programs, or we may share the workstations with interactive
foreground processes. These two NOW environments are called a
dedicated NOW (DNOW) and a shared NOW (SNOW) respec-
tively.

One of key issues in a SNOW is how intrusive a background
program is to foreground processes and vice versa. We assume
that workstation operating systems manage resources so that
background programs do not interfere with foreground processes,
but foregfound processes will interfere with the performance of
background programs. We refer to workstations scheduled in this
way as variable-speed processors for background programs. When

Manuscript received March 12, 1997; accepted August 21, 1997.

S. H. Cho is with the Dept. of computer and information communication in
Hongik Univertiy, Korea.

S. S. Jun is with the Dept. of computer science in Korea University, Korea.

a variable-speed processor executes a foreground process, we say
that it is f-busy. Otherwise, it is f-idle. The terms “workstations”
and “processors” are interchangeably used, and a variable-speed
processor is simply called a processor in case of no confusion.

The progress rate of processes on a DNOW is constant, but
that on a SNOW may unpredictably vary due to processor
sharing. This unpredictable variability may drastically degrade the
performance of background programs. In this paper, we present
competition protocols[10] to overcome this problem. Assuming
that the processors participating in competition are the same as
those participating in migration, we compare the performance of
competitive execution with that of process migration based on our
analytic results and simulation results.

II. Competition Protocols

Competition protocols are transparent operating system facilities
that involve creating multiple clones pi, pa, ..., pn of a process p
on n different variable-speed processors, and making them “com-
pete”. Then competition protocols monitor which clone is ahead
from time to time, and determine which clone is most ahead at
any given time, based on the number of instructions that clones
have executed, or the CPU times clones have used. If one clone
is sufficiently far ahead, competition protocols pause and propa-
gate the state of the clone ahead to the ones that are behind. The
clones that are behind use the propagated state to continue execu-
tion, that is, the clones that are behind jump forward to the state
of the clone ahead without executing instructions in p themselves.

If for any reason there is variation in the progress of the
clones, so that one clone is ahead at some times, but another is

184 . CHO and JUN : SPEEDUP OF SEQUENTIAL PROGRAM EXECUTION ON A NETWORK OF SHARED WORKSTATIONS

ahead at other times, then a set of competing clones may outper-
form any single copy. The goal of competitive execution is to
execute programs on idle processors on a SNOW without
interfering with foreground processes, minimizing the completion
time of programs. For competition, we require the runtime
behavior of each process to be deterministic.

1. Assumptions

We assume that a SNOW consists of' M processors and a
variable-delay communication network connecting processors, and
that all processors are physically identical. Each processor has its
own memory, and processors communicates with each other via
‘messages. Their execution speeds for background processes
change unpredictably, and the execution speed of a processor is
uncorrelated with those of other processors. In this paper, we
make only one assumption about execution speeds of processors
for background processes: they all have the same average
execution speed. However, background execution speeds may
fluctuate dynamically on processors over time.

For a sequential process sp, we assume that a competition
protocol replicates sp and statically assign k clones spi, spz, ..,
spx to k processors out of M processors where £ < M. We also
assume that a migration protocol migrates sp among k such
processors for fair comparison. At any given time sp is executed
by one of them, which is called a hosting processor.

We assume a simple policy for migration and competition
respectively: when a process is preempted due to foreground
processes, a migration protocol migrates the process immediately
to a f-idle processor if one is available. Otherwise, the migration
protocol migrates the process later as soon as one processor
becomes f-idle. This migration protocol is called a MIG protocol.
On the other hand, a competition protocol, called a COMP
protocol, propagates states immediately when a clone ahead is
preempted. It is assumed that the delay for migration and state
propagation is zero in the MIG protocol and the COMP protocol.
When the delay for migration or state propagation is non-zero but
constant D, they are called a MIG_D protocol and a COMP_D
protocol rtespectively. However, we assume that the decision for
migration and state propagation is made instantly in all the
migration or competition protocols in this paper.

While migration protocols migrate a process, we assume that it
cannot execute unti! migration is finished. Similarly when compe-
tition protocols propagate a state of a clone, they freeze execution
of all the other clones instantaneously. Then they start to
propagate its state to the other clones.

2. An Example of Competition on Three Processors

Consider an example in Fig. 1 where there are three variable-
speed processors PI, P2, and P3. Now we want to execute a
non-interactive sequential process sp in the background on these

{b) Competition

(a) Migration

Fig. 1. Execution on Three Variable-speed Processors.

three processors. Shaded rectangles represent foreground activities,
and we cannot know what the future foreground activities are
going to be on these processors.

Foreground activities on PI, P2, and P3 are identical in Fig. 1
(a) and (b) where numbers represent real time. The periods of
freezing are shown by dashed rectangles in Fig. 1 (b), and the
faster trace of execution is shown by thick vertical arrows while
the slower one is shown by thin vertical arrows. We assume that
the delay for process migration or state propagation is 1 unit of
time, and that it takes 10 units of time to run sp on a dedicated
Processor.

The dashed arrows in Fig. 1 (a) show the optimal migration
path where migration completes sp in 13 units of time. In order
to obtain the shortest execution time, it is necessary to migrate sp
from PI to P3 rather than P2 at real time 7. However, when
migration decision is made at real time 7, it cannot be known that
P3 is a better choice than P2 without the complete knowledge of
the future foreground activities on P2 and P3.

On the other hand, Fig. 1 (b) shows that competition completes
sp in 12 units of time. Unlike migration, competition does not
need to know the future foreground -activities on P2 and P3 at
real time 7 to finish sp in the shortest execution time. Competi-
tion easily obtains this benefit at the cost of redundant execution
of clones.

Now we present other reasons why compet(ition protoocols are
preferable to migration protocols in a SNOW. Migration protocols
have to choose ore target processor out of multiple candidate
processors for migration. However, the target may become f-busy
before migration is finished, even though other candidates are still
f-idle. When the migration delay is large or the workload of
foreground processes on processors changes fast or drastically,
migration mﬁy be often unsuccessful. Even if migration is
successful, the f-idle period of the target may be smaller than
those of the other candidates. That is, migration protocols choose
any of the f-idle periods of all the candidates, including the

minimum and the maximum.

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 6, 1997 185

On the other hand, the f-idle period in competition protocols is
not a typical f-idle period but the maximum of f-idle periods;
when more than one clone start to execute at the same time after
state propagation, all of them must have made the same progress
when any of them is preempted earliest. But only the clone that
is preempted last can propagate its state.

3. Optimal Speedup of Competition

The completion time of a clone can be stretched due to the
preemption of foreground processes. Let W be a completion time
of a sequential process on a dedicated processor and let T denote
a completion time of the process on a variable-speed processor.
The stretching ratio SR of the variable-speed processor is defined
as SR = T/W, and we assume that the mean stretching ratio SR
does not change for the entire computation of applications.

We assume that the mean foreground processor utilization p is -

statistically identical at all processors. Then the mean background
execution speed at all processors is also statistically identical.
Now assume that we tun a program on one processor in the
background without competition, and that we run the program in
the background with competition on N (N > 1) such processors
with the same p. Let 7T,(1,0) and T.N p) denote the mean

completion time of the program without competition and that with
competition respectively. We define the speedup of competition,
SP(1, N, 0), as

T,.(1,0)

T.(N,0) W

SPK(1,N, p)=

Let an ideal competition protocol make state propagation
decision and state propagation itself instantaneously without any

overhead at optimal times.

Theorem 1 : Assume that all processors alternate f-idle periods
and f-busy periods, and that the foreground utilization of all
processors is p. Then the optimal speedup of the ideal compe-
tition protocol on k independent processors over one processor is

l1+p+ - - - +o*7h ()]

The proof of this theorem is omitted here, but is found in{[10].
This theorem is true for independent processors with any
underlying distributions as long as they have the same p, and
shows that the ideal competition protocol has a diminishing retumn
in adding another processor. The best speedup from competition
occurs when p is very high. But that’s exactly the same time
when it takes the longest. So we have the tradeoff; we can finish
soon if p is low because there are lots of spare cycles, but
competition probably won’t help much. Or if p is high, there is
high degree of competition efficiency and thus we can finish soon
by cloning more.

Idle
’ "Busy
time
Idle
4
g § Busy
P1 P2 Virtual Node

{Initial Placement)

Fig. 2. MIG Protocol.

. MIG Protocol and COMP Protocol

We assume that the lengths of f-busy periods at all processors
are independent and identically distributed (i.i.d.) random variables
from an exponential distribution B(t), with mean 7%, and
comresponding density b(t). Then,

BH=1—e"", 1=0. ©))

Likewise, the lengths of f-idle periods at all processors are i.i.d.
random variables from an exponential distribution I{t), with mean
Ti, and density i(t). Then processors alternate between f-busy and
f-idle states at constant rates[10], and each processor is f-busy a
fraction p =1y / (T; + Tp) Of time, and f-idle the remaining fraction
1-p of time. The mean stretching ratio can be expressed in terms
of 1; and T, on a processor as follows[10];

:S‘T= 1+ Z'(,/ 7;, (4)

Now we derive the closed form solutions for the speedup of the
MIG protocol and the COMP protocol.

1. MIG Protocol

We consider two processors PI and P2 in Fig. 2 where sp
initially starts on P2. Shaded periods indicate that processors are
f-busy, and white periods indicate that processors are f-idle. A
solid horizontal arrow indicates a process migration (called migra-
tion push) at the end of a f-idle period, while a dotted horizontal
arrow indicates a migration pull at the beginning of a f-idle
period. We need to distinguish a migration push and a migration
pull when the migration delay is non-zero. The execution trace of
sp is shown by thick vertical arrows in Fig. 2

In order to analyze the performance of the MIG protocol, we
project f-busy and f-idle periods on P! and P2 horizontally onto
an imaginary processor, called a virtual node. If both PI and P2
are f-busy at a given time, the virtual node is called busy.

186 CHO and JUN : SPEEDUP OF SEQUENTIAL PROGRAM EXECUTION ON A NETWORK OF SHARED WORKSTATIONS

Otherwise, the virtual node is called idle at the moment. A period
that is continuously busy or idle is called a busy period or an idle
period respectively. The initial f-busy periods on two processors
are in fact the residual f-busy periods when sp starts. Since the
distribution of time remaining for an exponentially distributed
random variable is independent of the acquired “age” of that
random variable[11], the length of each busy period on the virtual

node is simply the minimum of the lengths of two f-busy periods

on PI and P2.

An idle period on the virtual node may consist of more than
one segment where each segment indicates that sp executes on a
processor during that period. Busy periods and idle periods on the
virtual node alternate. We analyze the performance of the MIG
protocol on the virtual node based on the renewal period[12]. If
we know the means of busy perlods\ and idle periods on the virtual
node, we can find the performance of the MIG protocol by using
equation (4).

Let By and Ix denote a busy period and an idle period respec-
tively on a virtual node when there are k participating processors.
Then By is the minimum of & exponentially distributed random
variables with the same mean Ty, and thus

By =1,/ k. &)

Now consider the mean of an idle period. The probability that
a processor is f-busy at any given time, is p. If sp starts at PJ
initially in Fig. 2, P1 can start to execute sp without a migration
pull, and PI is called a proper processor. Otherwise, Pl is called
an improper processor.

Let X denote the number of migrations excluding the migration
pull in an idle period. Then the number of segments in an idle
period is X+1. The probability mass function of X is given by a
modified geometric distribution[13]:

Pld=f-s, =012, - ©
where s is the probability that another processor is f-idle when sp
is preempted at one processor, and f = 1-s. Then

X=s/f=s/Q-5s).

An idle period consists of the random sum of segments, and
each segment is exponentially distributed as a f-idle period due to
the memoryless property of exponential distributions. Let 7, be
the mean of Ih. Then T, =z{ X +1)=r/(1—s). Thus the mean
stretching ratio of the MIG protocol on two processors is given by

‘B, —

SRue(2)=1+—=% =1+ . L) ™

I T 2
The speedup of the MIG protocol with two processors over a

single processor is

1+(zp/) L+ (rp/7) ®
SRMIG(Z) - 1+(Tb/fi) . (1—8)/2 ’

Sp MIG(Z) =

Since the MIG protocol does not have any overhead, equation
(8) should be the same as the optimal speedup in Theorem. 1,
which is 1+ p. By setting SP,(2) =1+p, we have

T
= T +2 Ty) (9)

2. COMP Protocol

Consider Fig. 3 where clones sp; and sp: start to execute at t]
on Pl and at 12 on P2 respectively. A solid arrow indicates a
state propagation. Note that P! preempts sp; at t6 and propagates
its state even though P2 is f-busy.

An idle period on a virtual node ends when both of processors
is f-busy. Thus we need to know what is the probability that the
other processor is f-busy or f-idle at the end of a state
propagation. Since state propagation is instantaneous, this proba-
bility is the same as the probability that the other processor is
f-idle at the moment of preemption on a processor. Thus this
probability will be the same as s in equation (9).

Let Y denote the number of state propagations in an idle
period. The number of segments in an idle period of the COMP
protocol is Y because state propagations occur at the end of each
segment including the last one. Thus the probability mass function
of Y is given by a geometric distribution[13]:

PA=fs, i=12,++ - 10$)

where s =17/ (T; + 21p) and f=1-S. Thus .
Y = 1/f=1+1%/27.

Let I denote the length of an idle period when there are two
participating processors. Then

7;= T 7= Z','(1+Z','/22'17)- (11)

Since B, =T,/ 2, the mean stretching ratio of the COMP protocol

on two processors is given by

'__ E _ (Z','+ Z'b)2
SR COMP(Z)—‘1+]—2 - Ti(Ti+27b) . (12)

The speedup of the COMP protocol with two processors over a

. single processor is

1+ (/) .
SP courl2) = SR conp(2) 1 ritr, 1te. (13

Thus the performance of the COMP protocol is the same as the
optimal speedup given in Theorem 1. Our analytic results here

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 6, 1997 187

Idle

B Lo

Mes
time
7] a Idle
P1 P

t3 1
State Propagation

I |t

2 Virtual Node

tl

Fig. 3. COMP Protocol.

must agree with the optimal speedup because the MIG protocol
and the COMP protocol never waste any available CPU cycles.

IV. MIG_D Protocol and COMP D Protocol

Migration in the MIG protocol is always successful because
migration is instantaneous, but migration in the MIG_D protocol
may not be successful due to the migration delay. When migra-
tion is unsuccessful, we assume that the target processor treats sp
in the same way as it preempts sp. We derive the speedup solutions
of the MIG_D protocol and the COMP_D protocol.

1. MIG_D Protocol

The activities of foreground processes on PI and P2 in Fig. 4
are the same as those in Fig. 2. A solid arrow indicates a
migration push and a dotted arrow indicates a migration pull. An
idle period in Fig. 4 consists of black periods and white periods.
A black period denotes the migration delay D, which is also
shown by a shaded rectangle. Only white periods will be effec-
tively available to execute sp. ’

Let Ar and Ui denote the sum of white periods and that of
black periods in an idle period on a virtual node respectively
when the number of participating processors is k. A is called an
available time. Since only the available time in a renewal period
can be used to execute sp, the stretching ratio will be
1+ (B, +U)/A,.

An idle period can start with a white or a black period
depending on whether sp is positioned at the proper processor at
the beginning of an idle period. Let X denote the number of
migrations except the migration pull in an idle period. Then the
random variable X will be distributed as in equation (6).

If D>1; a f-idle period is likely to be available locally, and
we are interested in the case where D <7%; Let I be a random
variable which represents a residual f-idle period. The probability

of migration success is P[> Dl=e " because of the memo-

Idlo

time T

Bugy

Idlo

55

Virtual Node

{Initial Placement)

Fig. 4. MIG_D Protocol.

ryless property of an exponential distribution.
Let the mean of an available time in an idle period be A4,.
Then

A—2=%+%P[I>D]+ri-7-H1>D]. (14)

The first and the second terms account for the case that sp is
positioned at the proper processor and at the improper processor
in the beginning of an idle period respectively. The last term
accounts for the accumulated f-idle periods on Pl and P2 in an
idle period. The second and third terms are multiplied by P{I> Dl
because sp has the chance to run only when migration is
successful. Since the mean number of migration pushes is X = s
[(1-8) = T; [2T,

’A;:%[H(H%)e“”*]. (15)

Here B, =T,/2, and let T, be the mean of the sum of the

migration delays in an idle period. Then,

iy, (16)

Ty

U,=

o

+X -p=2a+

The first term accounts for the migration pull, and the second
term accounts for the migration delay due to migration push
regardless of its success or failure. Thus the stretching ratio of the
MIG_D protocol on two processors is

ry+wD

SR p2)=1+—"——p
wic-p(2) toe)

a7
where w=1+1z/z,.

2. COMP_D Protocol

The activities of foreground processes on PI and P2 in Fig. 5
are the same as those in Fig. 3, and a solid arrow indicates a state

188 CHO and JUN : SPEEDUP OF SEQUENTIAL PROGRAM EXECUTION ON A NETWORK OF SHARED WORKSTATIONS

A Idlo
| oy

time

Idle

+

Virtual Node

Fig. 5. COMP_D Protocol.

propagation. An idle period in Fig. 5 consists of black periods
and white periods, and a black period denotes the state propa-
gation delay D, which is also shown by a shaded rectangle. Only
white periods will be effectively available to execute clones.
We say that a state propagation is successful if a state
propagation is completed when one of participating processors is
f-idle, and thus sp can make its progress without any interruption
except the propagation delay. This occurs when the f-busy period
at the state propagator is smaller than D or state propagation is
completed when the other processor is f-idle. We approximately
use s =7;/(Ti + 27p) in equation (9) as the probability of the latter
case. Then the probability that a state propagatlon succeeds is
given by
-D/5,

=Dz | Ti
te r;+2t s)

s5=1—e

and the probability that state propagation fails is f;=1-s;. Let ¥
be the number of state propagations in an idle period. Then the
probability mass function of Y is given by the geometric distribu-
tion in equation (10) where s=s; and f=f;. Thus

Y =A==+)D" (19)

When a state propagation is completed, two clones may start
execution at the same time, but only the clone with the longer
f-idle period can propagate its state. Thus the corresponding
segment here is not a typical f-idle period, but the maximum of
two f-idle periods. When one clone starts earlier than the other,
the corresponding segment is a typical f-idle period.

Two clones start at the same time when the f-busy period on
the state propagator is smaller than D and the other processor is
f-idle when the state propagation is completed. This probability is

(1, D Ti
b=(—e) o, @0)

and the probability that one clone starts earlier than the other is

_D/ b z.

et @

Z',‘+27.'b :

c=e

Let A, be /the mean of an available time in an idle period. In
order to find A,, we need to know what is the probability that a
segment in an idle period is the maximum of two f-idle periods
and what is the probability that a segment is simply a typical
f-idle period. Since

btc=—5—[r;+2r,(l—e ¢,

2'+2

we need to normalize b and c¢. Let b =b/(b+c) and ¢ = c/(b+0).
Then

—Diz ~Dfr, —Dir,

_ t{l-=e and oo e 21 -e "
=T o /1 =Dfey > = BER
Z',‘+2Tb(1—€ b) r;+2tl—e D)

The mean of the maximum of two exponentially distributed
lengths of f-idle periods is 37i/2[14]. Thus.

Ay=r;+ (?—l)(% ¥+rc).
By replacing b’, ¢’, and Y in the equation above, we get

Ap=rtel (14550 1] x

(1—e ™32 +2c)) + e 2 25
;+2r{l—e —D/"@) ’

Since B,=1/2, and U,=D-Y = D(1+2L;b)e”/”,

B+ U,

SR coup-p(2) =1+ T (26)
2

V. Simulation Results

We built a simulator to evaluate the performance of the MIG_D
protocol and the COMP_D protocol by using the language Maisie
[15], and simulated both of protocols for a period of 1000%;. Our
results are the means of 20 simulation runs. In all of our
simulations, T; was set to 1.0, and 1, and D are represented in
multiples of 7;. Fig. 6 and Fig. 7 show our analytic results and
simulation results when D is 0.27; and T; respectively.

In both of figures, the curves labeled as ‘Optimal Speedup’
show 1+p, and the curves labeled as ‘Analysis(M)’ and
‘Analysis(C)’ represent our analytic results derived in the section
IV. Our simulation results of the MIG_D protocol and the
COMP_D protocol are represented by the curves labeled as
‘Simulation(M)’ and ‘Simulation(C)’ respectively.

Fig. 6 and Fig. 7 show that the delay for migration and state
propagation can deteriorate the comp]etibn time of applications
when the mean lengths of busy periods is small; f-idle periods

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 2, NO. 6, 1997 189

Delay = 0.2 * Mean Length of Idle Periods

2 . . , :
18 F
16 |
[«
3
2 14 o
Q v
@ £ # Optimal Speedup ——
5 Simulation(C) -e---
121y Analysis(C) - .
‘? Simulation{M) -+
4 Analysis{M) ----
1 -
5
¢
0.8) n))
° 2 4 6 8 10

Mean Length of Busy Periods

Fig. 6. Speedup with Two Processors when D=0.27i.

may be locally available before migration or state propagation is
completed. In Fig. 7, the COMP_D protocol improves the perfor-
mance when 7T, >17; while the MIG_D protocol improves the
performance when 1y > 2.07;. But we get an improved performance
for the most of the region for both of protocols in Fig. 6.

When 7, <D, there is significant discrepancy between our
simulation results and analytic results especially in Fig. 7. This
occurs because we use s=1;/ (7 +27b) in equation (9) approxi-
mately to derive analytic results in the MIG_D protocol and the
COMP_D protocol respectively. Furthermore, the error of @ (=1
+17;/Ty) in equation (17) is magnified for a given T; when Ty
approaches 0. However, for a given D, f-idle periods are likely to
be locally available if T, approaches 0. Thus this is not the case
we are interested in.

As is evident from Fig. 6 and Fig. 7, the performance differ-
ence between the MIG_D protocol and the COMP_D protocol
increases as Ty increases for a given D. The reason is that as Ty
increases in the MIG_D protocol, the average number of
migration pushes in an idle period decreases and therefore the
overhead of migration pulls becomes dominating. On the other
hand, the COMP_D protocol does not suffer from any such
overhead.

Similarly, as D increases, there is an increase in the overhead
of migration pulls and a corresponding decrease in the probability
of migration success. When a process migration fails, a process
may have to migrate more than once without the chance of
running in the MIG_D protocol. The probability of state propaga-
tion success also decreases in the COMP_D protocol, but each
state propagation is guaranteed to improve the performance of
applications because whenever the clone that is most ahead is
preempted, competition protocols propagate its state to the other
clones. Thus competition guarantees that the clone ahead of other
clones is always on the fastest variable-speed processor among

processors at any given time.

Delay = 1.0 * Mean Length of Idle Periods
T T T

Speedup

Optimal Speedup —— ki
Simulation(C) -o---

Analysis(C) ----- .
Simulation(M) -+
Analysis(M) ---~

0.2 1 I L)
0 2 4 6 8 10

Mean Length of Busy Periods

Fig. 7. Speedup with Two Processors when D = 7i,

VI. Conclusions

We presented the reasons why competition protocols are prefer-
able to migration protocols in a SNOW by using an example and
qualitative arguments. Then we derived the closed form solutions
for the speedup of the MIG_D protocol and the COMP_D protocol,
and simulated both of the protocols to validate our analysis. By
using analytic results and simulation results, we showed that
competitive execution can finish sequential programs significantly
faster than noncompetitive execution, especially when the fore-
ground load on each processor is sufficiently high.

When the delay for migration and state propagation is non-zero,
we demonstrated that competition protocols for sequential programs
offer performance benefits that may be better than migration
protocols under comparable overhead assumptions at the cost of
redundant execution. Competition protocols use only otherwise
idle CPU cycles, so redundant execution does not really cost at
all. Of course, competitive execution cannot be employed when
there is no enough idle CPU cycles. However, many researchers
have observed that significant portion of CPU cycles on SNOWs
has gone unused. In our companion paper[16], we will show that
competition protocols offer even more speedup for distributed
programs than for sequential programs.

References

[1] T. E. Anderson, D. E. Culler, D. A. Patterson, and the NOW
team, “A Case for NOW(Networks of Workstations)”, IEEE
Micro, pp. 54-64, Feb. 1995.

[2] R. Agrawal and A. K. Ezza, “Location Independent Remote
Execution in NEST”, IEEE Trans. on Software Eng., Vol.
13, No. 8, pp. 905-912, Aug. 1987.

[3] R. E. Felderman, E. M. Schooler, and L. Kleinrock, “The
Benevolent Bandit Laboratory: A Testbed for Distributed

190 CHO and JUN : SPEEDUP OF SEQUENTIAL PROGRAM EXECUTION ON A NETWORK OF SHARED WORKSTATIONS

Algorithms”, IEEE Journal on Selected Areas in Communi-
cations, Vol. 7, No. 2, pp. 303-311, Feb. 1989.

[4] P. Krueger and R. Chawla, “The Stealth Distributed Sched-
uler”, 11th Int’l Conf. on Distributed Computing Systems, pp.
336- 343 May 1991.

[5]1 M. J. Litzkow, M. Linvy, and M. Mutka, “Condor-A Hunter
of Idle Workstations”, 8th Int’l Conf. on Distributed Compu-
ting Systems, pp. 104-111, 1988,

[6] D. A. Nicols, “Using Idle Workstations in a Shared Compu-
ting Environment”, Operating Systems Review, Vol. 21, No.
S, pp- 5-12, Nov. 1987.

[7] G. C. Shoja, “A Distributed Facility for Load Sharing and
Parallel Processing Among Workstations”, Journal of Systems
and Software”, Vol. 14, pp. 163-172, 1991.

[81 M. Theimer, K. Lantz, and D. Cheriton, “Preemptable Remote
Execution Facilities for the V System”, Proc. 10th ACM
Symp. on Operating System Principles, pp. 2-12, 1986.

[9] S. Zhou et al., “Utopia: A Load Sharing Facility for Large,
Heterogeneous Distributed Computer Systems”, Software:
Practice and Experience, Vol. 23, No. 12, pp. 1305-1336,

Sung-Hyun Cho received the B.S. degree
and the M.S. degree in computer science
from Seoul National University in 1978
and 1980 respectively, and the Ph.D.
degree in computer science from Univer-

g sity of California at Los Angeles in 1995.
% 15; He has served his military duty at Korea
military academy from 1980 to 1983. He
has worked as a postdoctoral fellow from 1995 to 1996. Since
1996, he has been with the division of computer and information

communication in Hongik University. His research interests are in
the areas on distributed operating systems, distributed database sys-
tems, distributed algorithms, realtime systems, and fault tolerance.

Dec. 1993.

[10] S. H. Cho, Competitive Execution in a Distributed Environ-
ment, Ph.D. Dissertation, University of California, Los Angeles,
Computer Science Départment 1995.

[11] L. Kleinrock, Queueing Systems: Theory, John Wiley and
Sons, Inc., 1975.

[12] D. R. Cox, Renewal Theory, Methuen and Co., Ltd., London,
1962.

[13] K. S. Trivedi, Probability and Statistics with Reliability,
Queuezng, and Computer Science Applications, Prentice-Hall,

, 1982

[14] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First
Course in Order Statistics, John Wiley and Sons, Inc., 1992.

[15] R. Bagrodia and W. T. Liao, “Maisie: A Language for the
Design of Efficient Discrete-Event Simulations”, IEEE
Software Eng., Vol. 20, No. 4, pp. 225-238, April 1994.

[16] S, H, Cho and S, S, Jun, “Competitive Execution of Distri-
buted Programs on a Network of Shared Processors”, accepted
by Journal of KISS(A): Computer Systems and Theory.

Sung-Syck Jun received the Ph.D. from
Korea University in 1985. Since 1988, he
has been a professor in the computer .
science department in Korea University.
His research interests are in the areas on
digital systems, computer architecture, and

MiCTOProcessors.

