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EMG Pattern Recognition based on Evidence
Accumulation for Prosthesis Conirol

Seok-Pil Lee and Sang-Hui Park

Abstract

We present a method of electromyographic(EMG) pattern recognition to identify motion commands for the control of a prosthetic arm

by evidence accumulation with multiple parameters. Integral absolute value, variance, autoregressive(AR) model coefficients, linear cepstrum

coefficients, and adaptive cepstrum vector are extracted as feature parameters from several time segments of the EMG signals. Pattern

recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. A fuzzy

mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to

support the feasibility of the suggested approach for EMG pattern recognition.

I. Introduction

It has been proposed that the electromyographic(EMG) signals
from the bodys intact musculature can be used to identify motion
commands for the control of an externally powered prosthesis
[1-5]. The information extracted from the EMG signals, repre-
sented in a feature vector, is chosen to minimize the control
error[6]. In order to achieve this, a feature set must be chosen
which maximally seperates the desired output classes. The
extraction of precise features from the EMG signals is the main
kernel of classification systems and is essential to the motion
command. identification[7]. But the nonstationarity involved in the
EMG signals makes it difficult to extract a feature parameter
which reflects the unique features of the measured signals to a
motion command perfectly as well as difficult to extract feature
parameters precisely with the block processing stationary model
such as an autoregressive(AR) model[8-10]. Once a feature set
has been chosen, a suitable pattern classifier can be used to deter-

- mine class output.

For the purpose of solving the motion command identification
problem using EMG signals, several approaches such as modeling
the EMG signals as a stationary time series(AR model){11-13],
using linear discriminant function[14], learning linear classifier[15,
16], and neural network[6, 17],. have been suggestec’f" Although
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previous works have brought some sort of theoretical and practical
achievements for a prosthetic arm, further advancement such as
accurate identification of motion and exact modeling of EMG
signals, is required to achieve an ultimate goal[l].

We present an EMG pattern recognition method for preciser
identification of a motion command. The proposed method based
on artificial intelligence(AI)[18] is able to accommodate the
expected individual difference with little subject training as well
as has less computing time in the pattern recognition with the
extracted feature parameters. At first, based on the previous
researches[l, 6, 15, 19], integral absolute value, difference
absolute mean value, variance, autoregressive(AR) model coeffi-
cients, and linear cepstrum coefficients, are extracted as feature
parameters. And considering nonstationary property{9] of EMG
signals, adaptive cepstrum vector{7] is extracted as a feature para-
meter. To evaluate the feasibility of the above feature parameters
for EMG pattern tecognition, a simple separability measure is
provided. Then a the Dempster-Shafer theory of evidence[20-22]
is employed as an evidence accumulation method for the pattern
recognition. A fuzzy mapping function is désigned for the appli-
cation of the Dempster-Shafer theory of evidence. Finally, a series
of evidence accumulation procedure according to the motion and
the recognition error rates are provided.

II. Feature Parameters

The success of any pattern classification system depends almost
entirely on the choice of features used to represent the raw
signals[6]. It is desirable to use multiple feature parameters for
EMG pattern classification since it is very difficult to extract a
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feature parameter which reflects the unique feature of the measured
signals to a motion command perfectly. But the using of the
additional feature parameter having a small separability may
debase the overall efficiency for a pattern recognition[23, 24].

Considering the previous works[1, 6, 7, 15, 19], the following
feature parameters based on time and spectral statistics are chosen
to represent the myéelectric pattern:

1) Integrated Absolute Value(IAV) — This is the feature para-
meter based on time statistics and is an estimate of mean absolute
value of the signal, X, in segment i{ which is N samples in

length, as given by

— 1 N
X,'=W 21X @

k=1
where X is the kth sample in segment i.

2) Difference Absolute Mean Value(DAMV) — This is the
feature parameter based on time statistics and is the mean
absolute value of the difference between the adjacent samples, &
and k+1, as defined by

. R,
A X;= N-1 El | Xer1—Xe |l 2

3) Variance(VAR) — This is the feature parameter based on
time statistics and is an estimate of the variation of the signal X;

in segment i, as defined by
& = E{ X3} —E4X,} : 3

where E{X;} is the expectation value of X,

4) AR model coefficientstARC) — This is the feature para-
meter based on spectral statistics has the peak information of the
signal on its spectrum.

5) Linear Cepstrum Coefficients(LCC) — This is the feature
parameter based on spectral statistics and comprises the accurate
spectrum information of the signals.

6) Adaptive Cepstrum Vector(ACV) — This is the enhanced
feature parameter based on spectral statistics and is extracted by
the algorithm{7] which combines with block and adaptive processing.

These features are extracted from each time segment to create
the total feature set used to represent the myoelectric pattern.. The
total number of feature parameters is determined by the number
of time segments in'the pattern. Although the variance in the time
structure of the signals is high, waveform statistics may be stable
enough to allow pattern classification. The effect of segment
length on classification accuracy must be examined to determine a
value which is the best compromise between class information
and feature estimation error[6].

Considering the previous works[11, 13, 25], the segment length
and overlap rate are determined as 64ms and 0.5, respectively and

the order of filter at ARC, LCC, and ACV is determined as 6 in
this paper. To evaluate the feasibility of the above feature para-
meters for EMG pattern classification, a simple test of separability
measure is provided by the Bhattacharyya distance[26] in the test
results. The Bhattacharyya distance £(1/2) is used as an important
measure of the separability between distributions.
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where M, M- is the mean of class 1 and 2 respectively, 23,

@

3%, is the covariance of class 1 and 2 respectively.

M. Pattern Recognition Based on Evidence
Accumulation

There are several factors which must be considered when
choosing a classifier or a recognition method for the present |
application. Due to the nature of the myoelectric signal, it is
reasonable to expect a large variation in the value of a particular
feature between individuals. Many factors such as changes in
electrode position, myoelectric signal training, and body weight
fluctuations will produce changes in feature values over time. A
suitable recognition method must be able to accommodate the
expected individual differences. And it must generate reasonably
accurate results with the extracted feature parameters as well as
has less computing time for real time prosthesis control{6]. The
evidence accumulation method is chosen as the recognition method
for this application. Fig, 1 illustrates the schematic diagram of the
proposed approach for EMG pattern recognition.

First of all, a series of feature parameters introduced in section
1l is extracted per motion from the sample EMG signals. The
mean of each feature parameter is stored per individual as the
reference parameter. And a distance measure between the reference
parameters and a series of feature parameters extracted from the
test EMG signals is executed. The Euclidean distance[26, 27] is
used for that measure. Then an evidence accumulation procedure
is carried out for pattern recognition with the distances trans-
formed by a fuzzy mapping function which is designed to
transform the distances measured for the application of the
Dempster-Shafer theory of evidence employed in this paper.
Finally the motion corresponding to the EMG signals is identified.

1. Evidence Accumulation

The shortcomings of evidence accumulation schemes commonly
employed in rule based expert systems based on the MYCIN
model have been recognized[28]. The classical theory and the
conventional MYCIN combing rule have a very undesirable flaw
in the combining of opposing pieces of evidence — the greater the
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Fig. 2. Evidence accumulation procedure.

weights of contradicting evidence, the greater the resulting certainty
in their accumulation. In contrast, the Dempster-Shafer theory of
evidence not only eliminates that problem but also provides a
gracefully degrading certainty estimate as such contradictory
evidence accumulates[20].

Four components, e.g., evidence for(ef), evidence against(ea),
neutral evidence(n), and contradictory evidence(x), are used to
represent an evidence in the Dempster-Shafer theory. Each com-
ponent is a number in the range(0, 1]. '_The accumnulation of
evidences is illustrated in Fig. 2. )

The combining operator has closure, commutivity, and associ-
ativity. In each class, the evidences for the class computed by
using multiple feature param'eters, eg., a, b, ¢, etc. in Fig. 2, are
accumulated one after another. After the above procedure is done
per class, the class which has the maximal ‘final value of ef is
chosen as the motion corresponding to the EMG signals.

2. Fuzzy Mapping

To apply the Dempster-Shafer theory of evidence in the EMG
pattern recognition, the components of evidence are determined

0 MAX ‘ . d
Fig. 3. Fuzzy mapping function.

based on the distance d between the-sample parameters and a
series of feature parameters extracted from the test EMG signals.
A fuzzy mapping function f{d) is designed to’ transform the
distance d and is shown in (5) and Fig. 3. ’

V dIMAX 0<d<MAX
f(d)={ S — d>MAX ®
1+exp(MAX—d) :

MAX in fig. 3 is the maximal value of the difference between
the mean and the elements in a distribution of each parameter
from the sample EMG signals per class per individual. The fuzzy
mapping function varies largely at the vicinity of the point that
the value of the distance d is MAX. It is for being of help to
pattern recogmtion by means of making the difference ‘between
the values of the functions large at the vicinity of the boundary
of each class[29]. Then the components of evidence are formed as

follows:
ef=1-Ad), n=1—ef 0<d<MAX
: - (6)
ea=Rd)—1, n=1-ea d>MAX

In case the distance d is smaller than MAX, only ef and n
according to the distance exist since the input feature parameter
can be recognized as the evidence for the class. On the contrary,
in case the distance d is larger than MAX, only ea and n
according to the distance exist since the input feature parameter
cannot be recognized as the evidence for the class. The value of
each component of evidence according to each feature parameter
per motion class can be obtained from (6). Fig. 4 represents an
example of the evidence boundary of 3 classes in two dimen-
sional distribution. '

The evidence for each class exists only in inside. of the
boundary and the evidence against each class exists only in
outside of the boundary. X1 and X2 represent the feature
parameters in Fig. 4. Using the multiple feature parameters
referred in section II, the evidence boundary in six dimensional
distribution is formed. ' ’
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IV. Test Results

Six basic motions, e.g., elbow flexion(FL) and extension(EX),
wrist pronation(PR) and 'supination(SU), and humeral rotation
in(RI) and rotation out(RO), are considered as pattern classes.

Floating point surface electrodes, silver/silver chloride pregelled
disposable electrodes with hypoallergenic tape, are used to
measure the EMG signals. They are located in two sites: one is
just on the bﬁlge of biceps brachii and the other is in the lateral
head of triceps. The measured signals were bandpass-filtered
(10-500 Hz) and 1000 times amplified and then sampled at 1kHz.
The EMG signals were obtained from six subjects through 50
times per each motion.

Fig. 5 shows the mean values of variances of ARC, LCC, and
ACV per subject.

As shown in Fig. 5, ACV presented stable property for EMG
signals since the variances of ACV are smaller than those of
ARC and LCC. Fig. 6 represents the value of the separability

Fig. 6. Separability between classes.

between classes with the multiple parameters, e.g., IAV, DAMV,
VAR, ARC, LCC, and ACV by the Bhattacharyya distance. As
shown in Fig. 6, ACV is superior to the other feature parameters
in the separability for EMG pattern classification.

A series of evidence accumulation procedure according to the
test EMG signals is shown in Table 1, Table 2, Table 3, Table 4,
Table 5, and Table 6, respectively. The evidence is represented as
{¢f, ea, n, x). The variation of the value of ef according to the
procedure of evidence accumulation is represented in Fig. 7, Fig.
8, Fig. 9, Fig. 10, Fig. 11, and Fig. 12, respectively.

As shown in above evidence accumulation procedure, the
proposed classifier recognized the desired motion corresponding to
the test EMG signals based on the other evidences by means of
choosing the motion which has the maximal final value of ef,
though some of evidences by the inaccurate feature parameters
provided the cause of recognition error. The recognition error
rates with several methods per motion are shown in Table 7. The

error tates of Table 7 are normalized by those using the distance
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Table 1. Evidence accumulation procedure; for test signals belong-
ing to FL from subject 1.

Motion .
FL EX PR SU RI RO
Parameter
AV (0.594,0,] (02030, {(0.373,0,| (0.594,0, | (0.642,0, | (0.053,0,
0.406, 0y 0.797,0) | 0.627,0) | 0406,0) | 0.358,0) | 0.947,0)
DAMV (0.098,0,| (0,0.327, {(0.302,0,{ (0.508,0, { (0.409,0, | (0,0.145,
0.902,0) t 0.673,0) |0.698,0) | 0492,0) | 0.591,0) | 0.855,0)
VAR (0.103,0,! (0.399,0, [(0.472,0,| (0.696,0, | (0.702,0, | (0,0.008,
0.897,0) | 0.601,0) | 0.528,0)| 0304,00 | 02980) | 0.992,0)
ARC (0518,0,) (0.227,0, [(0.2350,{ (0.0250, | (0.249,0, | (0,0.171,
0.482,0) | 0.773,0) | 0.7650) | 09750) | 0.751,0) | 0.829,0)
ee (0516,0,{ (0.181,0, [(0.167,0,{ (0.583,0, | (0,0.104, | (0,0.105,
0.484,0) [ 0819,0) | 08330} ( 0417,0) | 0.8960) | 0.895,0)
ACV (0.651,0, (0,0030, |(0.103,0,} (0,0250, | (0,0.114, | (0,0.295,
0.349,0) | 0.970,0) | 0.897,0)| 0.750,0) | 0.886,0) | 0.705,0)
Accumulated| (0.973,0, ((0.454,0.106,| (0.868,0, {(0.732,0.006,(0.756,0.009,/(0.024,0.526,
Evidence | 0.027,0) (0.198,0.242)| 0.132,0) |0.018,0.244)(0.038,0.197)( 0.42,0.03)

e
1
0.9
08 |
07 F
: ——FL
0.6 * EX
05 £ - —4— PR
e —— SU
0.4 —— Rl
03 Ff . ~e— RO

0.2 fe
0.1 r

1 2 3 4 5 6
accumuiation number

Fig. 7. Value of ef according. to the procedure of evidence accu-
mulation ; for test signals belonging to FL from subject 1.

Table 2. Evidence accumulation procedure; for test signals belong-
ing to EX from subject 2.

Motion|
FL EX PR SU R RO
Parameter .
IAV (0.156,0, (0,0, (0,0219, | (0,0.516, |(0.430,0,| (0.489,0,
0.844,0) 1j000,0) 0.781,0) | 04840 -{ 0.570,0)| 0.511,0)
DAMV (0.458,0, 1(0.096,0, (0.384,0, | (0.036,0, | (0.579,0,{ (0.402,0,
0.542,0) 1 0904,0) | 061600 | 0964,0) | 0.421,0) | 0.598,0)
VAR (0,0.119, 1(0.733,0,| (0,0.335, | (0.215,0, |(0.538,0,{ (0.468,0,
0.881,0) | 0267,0) | 0.665,0) | 0.7850) | 0.462,0) | 0.532,0)
ARC - (0.522,0, 1(0.306,0,! (0.264,0, | (0,0.317, 7(0214,0, (0.011,0,
0.478,0) | 0.694,0) | 0.737,0)-| 0.683,0) | 0.786,0) | 0.989,0)
LCC (0,0.047, |(0.4050,| (0,0272, | (0,0.128, [(0.110,0, (0.117,0,
0.953,0) 105950) | 0728,0) | 0.872,0) 0.890,0) | 0.883,0)
ACV (0,0387, | (0.672,0,; (0,0990, | (0,0.387, |(0.041,0,] (0,0.226,
0.613,0) | 0328,0) | 001000 | 0613,0) | 0.959,0) | 0.774,0)
Accurnulated [(0.402,0.106,| (0.967,0, |(0.002,0.452,1(0.043,0.623,| (0.926,0, |(0.664,0.032,
\jvidence 0.113,0.379)§ 0.033,0) [0.002,0.544)|0.134,0.200)| 0.074,0) |0.110,0.194)

1 2 3 a4 5 6
accumulation number

Fig. 8. Value of ef according to the procedure of evidence accu-
mulation ; for test signals belonging to EX from subject 2.

Table 3. Evidence accumulation procedure; for test signals belong-

ing to PR from subject 3.

Motion :
FL EX PR SU RI RO
Parameter
1AV 06370, | (01230, 03630, 02320, | (02190, | (08160,
0363,0) | 0.877,0) {0.637,0)| 0.768,0) | 0.781,0) | 0.184,0)
pAMY | ©O706, | (03450, 102510, (0,0.006, | (00950, { (03310,
0294,0) | 0.655,0) |0.749,0){ 0994,0) | 0.9050) | 0.669,0)
vaR | ©6380, | (04970, (05980, (0542,0, | (0,0611, | (0:867,0,
0.362,0) | 0503,0) (0402,0)| 04580) | 0389,0) | 0.133,0)
ARc | ©46L0, | (01970, (04480, (0.3690, | (0.0860, | (0.0840,
0539,0) | 0.803,0) |0.552,0)| 0.631,0) | 0914,0) | 0916,0)
Lcc | (00890, | (00031, (03700, (04060, | (0.0280, | (00092,
: 0911,0) | 0.969,0) |0.630,0)| 0.594,0) | 0972,0) | 0.908,0)
acy | 00370, | (00857, (04590, (03110, | (00100, | (0,0.349,
0963,0) | 0.143,0) 10.541,0)| 0.689,0) | 0.990,0) | 0.651,0)
Accumulated| (0.276,0.044, | 0.106,0.200, [(0.964,0, | (0.904,0.001, | (0.147,0.380.(0.583,0.006,
Evidence |0.018,0.662){0.032,0.662) |0.036,0) | 0.090,0.005) | 0.242,0.231) [0.009,0.402)

of

1
0.9
0.8 1

7
0.7 1 ——FL
0.6 . EX
05 —PR
ol ——SU.
0.4} ——RI
0.3 —-RO

0.2
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3 4 5 6
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Fig. 9. Value of ef according to the procedure of evidence accu-
mulation ; for test signals belonging to PR from subject 3.



JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 6, 1937 25

Table 4. Evidence accumulation procedure; for test signals belong-
ing to- SU from subject 4.

Motion ' ]
FL EX PR sU RI RO
Parameter

1AV 0.702,0, | (0.575,0, | (0.354,0, |(0.270,0,] (0.038,0, | (0.6030,
0.2980) | 04250) | 0.646,0) (0.730,0)| 0962,0) | 0.397,0)

DAMV (0.208,0, | (0.109,0, | (0,0.115, |(0.376,0,| (0.294,0, | (02610,
0792,0) | 0.89),0) | 0.8850) |0.624,0)) 0.706,0) 0.739.0)

VAR 06950, | (06210, | (0.571,0, 1(0252,0,| (0.245,0, | (0.640,0,
0.3050) | 03790) | 04290) |0.748,0)| 0.7550) 0.360,0)

ARC 0.318,0, | (0.370,0, | (0.397,0, |(0.480,0,] (0,0.137, (0.431,0,
0682,0) | 0630,0) | 0603,0) [05200)| 08630 | 05190)

LCC (02460, | (00370, | (02520, |(0.446,0,] (0,0233, | (0.139.0,
0.754,0) | 0.963,0) | 0748,0) 10.554,0)| 0.767,0) | 0.861,0)

[ ACY (0,0242, | (0,0.185, | (0.268,0, [(0.545,0,( (0,0.743, | (0,0.652,
. 07580) | 08150) | 0732,0) {04550)| 0257,0) | 0.348,0)
Accumulated] (0.730,0.009, |(0.744,0.016,1(0.804,0.011, |{0.955,0,1(0.083,0.426,{0.331,0.031
Evidence |0.028,0.233)|0.017,0.169)| 0.081,0.104) | 0.045,0) | 0.087,0.404) 0.016,0‘622)J

ef
1
0.9
a.8
0
.7 o FL
0.6 « EX
05 -4~ PR
—~ SU
0.4 - Rl
0.3 ~&—~RO
0.2
0.1
0
1 2 3 4 5 3

accumulation number

Fig. 10. Value of ¢f according 10 the procedure of evidence accu-
mulation ; for test signals belonging to SU from subject 4.

Table 5. Evidence accumulation procedure; for test signals belong-
ing to Rl from subject 5.

Motion| EX PR SU R R0 |
Parameter

04270, | (02950, {(0427,0,{ (02940, |(04280,| (0.650,0,

1av 0573,0) | 07050y 10.573,0)} 0.7060) {0.572,0) [ 0.350,0)
DAMY (0817,0, | (04980, |(0.7870,| (0.7220, | (04000, (0.802,0,
0.1830) | 0502,0) (0.213,0)( 02780) | 0.600,0) | 0.198,0)

VAR (0.704,0, | (0.567,0, |(0.609,0,| (0.663,0, |(0.421,0,] (0.842,0,

0296,0) | 04330) |0391,0)] 0337,0) |05790) | 0.158,0)
03950, | (0.0.041, |(0.007.0,] (03990, | (07750, (0.617,0,

ARC 06050) | 095900 [0.993,0)} 0601,0) {0.2250)( 0.383,0)
Lce (0.148,0, | (0,0.156, |(0,0.088, (0.156,0, |(0.834,0, (0.358,0,
0.852,0) 0.844,0) |0.912,0)| 0.844,0) | 0.166,0) | 0.642,0)

| S
ACV 0,0495, | (00532, |(0,1.000,| (0,0.193, |(0.888,0, (0,0.279,

0,505,0)‘l 0.468,0) 0,0) 0.807,00 10.112,0)| 0.721,0)

Accumulated | (0.497,0.008, |(0.321,0.095, (0,0.047, |(0.778,0.007,| (0.999,0, ((0.719,0.001,
Evidence | 0.008,0.487) |0.058,0.526) 0,0953) |0.029,0.186) | 0.001,0) |0.002,0278)

of

1
0.9
0.8
0.7 ——FL
0.6 * EX
0.5 —4— PR
0 s
0.3 —o~ RO
0.2
0.1

0

1 2 3 a4 5 6

accumulation number
Fig. 11. Value of ef according to the procedure of evidence accu-

mulation ; for test signals belonging to RI from subject 5.

Table 6. Evidence accumulation procedure; for test signals belong-
ing to RO from subject 6.

Motion
FL EX PR SU Ri RO

Paramete! .
1AV (0274,0, | (02260, | (0.565,0, | (0.522,0, | (0.570,0, {(0.603,0,
0.726,0) | 0774,0) | 04350) | 04350) | 0.478,0) |0.397,0)
DAMV 0,0.101, | (0.570,0, | (06190, | (0.046,0, | (0,0.080, |(0.070,0,
0.899,0) | 04300) | 0.381,0) | 09540 | 0.9200) (0930,0)
VAR 0439,0, | (0.183,0, | (0,0.094, | (0.658,0, | (0.6150, |(0.1370,
0.561,00 | 0817,0) | 09060) | 0.342,0) | 0.3850) |0.863,0)
ARC 0.709,0, | (0.1440, | (04460, | (03480, | (0.258,0, |(0.5850,
0201,0) | 0.8560) | 0.554,0) | 0652,0) | 0.742,0) 104150
LCC 0.532,0, | (0.088,0, | (00085 | (00062, | (0,0.176, |(0.4380,
0468,0) | 0912,0) | 09150) | 09380) | 0.8240) |0.562,0)
ACV (0,0.152, | (00194, | (0,0.526, | (0.018,0, | (0,0.631, |(0.6650,
0.848,0) | 0.806,0) | 0.474,0) | 0982,0) | 0.369,0) }0.3350)
Accumulated! (0.720,0.013,1(0.644,0.039, r(0.357,0.056, (0.845,0.006,| (0.2450, ((0.975,0,
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Fig. 12. Value of ef according to the procedure of evidence accu-
mulation ; for test signals belonging to RO from subject 6.
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Table 7. Recdgm'tion error rates: using the distances with ARC
(A); with LCC(B); with ACV(C); using the sum of the
distances with multiple parameters(D); using the evi-
dence accumulation method with multiple parameters(E).

Method ’
Mot A B C D E
FL 1.000 0.879 0.727 0.667 0.455
EX 1.000 1.032 0.806 0.484 0.194
" PR 1.000 0.909 0.682 0.727 0.364
SU | 1000 0.750 0.556 0414 | 0278
RI 1.000 0.903 0.774 0.806 0.645
RO | 1000- | 0678 0.424 0.254 0.169

distances with ARC since the recognition error rates depend on

the .experimental environments.

V. Conclusions

.

We 'propoéed an EMG pattern recognition method to identify
motion commands for the control of a prosthetic arm by evidence
accumulation with multlple parameters. A series of evidence accu-
mulation procedure showed that the proposed method recognized
the desired motion efficiently with the multiple incomplete feature

parameters. Also, the separability test showed that ACV is more

feasible for EMG pattern classification than the other feature
parameters. This approach to EMG pattern recognition focuses on
generating reasonably accurate results with less computing time
using the extracted feature parameters and little subject training, it
seems advantageous . over other techniques that require consid-
erable training. Further work is recommended to find the optimal
feature parameters which are used as inputs to the EMG pattern
classifier and to enhance the decision algorithm for preciser
pattern recognition with the accumulated evidences.
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