JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 2, NO. 6, 1997 1

A Heuristic Scheduling Algorithm for Reducing
the Total Error of an Imprecise Multiprocessor
System with 0/1 Constraint

Ki-Hyun Song, Kyung-Hee Choi, Seung-Kyu Park, Dug-Kyoo Choi, and Kyong-Ok Yun

Abstract

The scheduling problem of satisfying both 0/1 constraint and the timing constraint while minimizing the total error is NP-complete when

the optional parts have arbitrary processing times. In this paper, we present a heuristic scheduling algorithm for 0/1 constraint imprecise

systems which consist of communicating tasks running on multiple processors. The algorithm is based on the program graph which is

similar to the one presented in[4]. To check the schedulability, we apply Lawler and Moore’s theorem. To analyze the performance of the

proposed algorithm, intensive simulation is done. The results of the simulation shows that the longest processing first selection strategy

outperforms random or minimal laxity policies.

I . Introductiocn

The imprecise system, proposed in[2, 7], provides flexibility in
scheduling time-critical tasks. Examples of its applications include
, image processing and tracking. Recently, the imprecise techniques
are widely applied to the multimedia processing to provide the
mechanism for QoS[1]. Several scheduling algorithms have been
developed in this area. Those are the algorithms for scheduling
imprecise jobs on uniprocessors, jobs with multiple versions, and
those for séheduling multitasking computations on multiprocessor
systems.

For some applications, execution of the optional parts is of
value only if they are executed completely before the deadline,
and of no value if they are executed partially. The systems with
such imprecise tasks are called systems with 0/1 constraints. Most
scheduling problems of satisfying both Of1 constraint and timing
constraints, while the total error is minimized, is NP-complete
when the optional tasks have arbitrary processing times[7]. By the
total error, we mean the sum of the processing times of all
optional tasks that could not be scheduled. In[2}, Liu suggested a
reasonable strategy of scheduling tasks with the 0/1 constraint on
uniprocessors for minimizing the total error. This method schedules
the first optional task with the longest processing time. In the
case of multiprocessor systems, one should take the communica-
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tions and states of processors into consideration for the correct
scheduling of optional tasks.

Natale proposed an end-to-end scheduling algorithm for
distributed systems in which the communications are considered
[4]. This algorithm shows good performance for precise systems
in which the tasks do not include optional parts. Natale’s
algorithm, however, cannot be applied to the imprecise system
since it does not provide a mechanism of reducing the program
graph or time graph for the optional tasks[6]. A special mecha-
nism is additionally required when the optional tasks are
considered. The different criteria of schedulability should be also
adopted. The scheduling problem in the precise systems is to
determine whether it can schedule all the tasks or not. In the
imprecise system on the other hand, several criteria can be used
such as minimization of total error, minimization of the maximum
or average error, etc.

In this paper, we present a heuristic scheduling algorithm for
imprecise multiprocessor systems with 0/1 constraint which
consists of a set of communicating tasks with 0/1 constraints. Each
task has mandatory and optional tasks. They run on multiple
processors. The tasks are statically assigned to given processors.
As those in the previous works{4, 6], the proposed heuristic algo-
rithms are based on the dual graphs, transformed from reduced -
program graphs. To obtain the reduced program-graph, we apply
a reducing algorithm which is a little modified from that in{4, 6].

The following shows steps of the proposed heuristic scheduling.
First, we calculate modified ready times and modified deadlines
of all tasks. Then an optional task is selected according to one of
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three different policies: the longest processing time first, the mini-
mum laxity policy, or the random policy. Once an optional task is
selected, whether it can be scheduled or not is checked based on
its execution time, modified ready time and modified deadline. By
the Lawler and Moore’s theorem, tasks with modified ready times
and deadlines can be scheduled if and only if tasks with the given
ready times and deadlines can be also scheduled[3]. If it turns out
that it cannot be scheduled with the selected option, the optional
part is rejected. Otherwise, when an optional task is accepted,
modified ready times and modified deadlines are re-calculated.
We repeat these steps until all the optional tasks are checked.

To analyze the proposed algorithm, intensive simulations are
done to see the total errors from the scheduling algorithm. The
simulation model is the same as that of[4]. The processing times
are randomly generated for the mandatory and optional parts of
tasks. The simulation shows that the longest processing first
policy outperforms the other two policies. When the number of
tasks is small, no notable difference is observed. As the number
of tasks increases, the total errors produced by the longest
processing first policy shows the efficiency of the algorithm in
which the amount of errors increases more slowly than the other
policies. The scheduling with the longest processing first policy
outperforms than the others, but is still not optimal in a point of
view of the optimality.

The rest of this paper is organized as follows. In section II,
we describe briefly the model of imprecise multiprocessor systems
with 0/1 constraints introducing some notations. The proposed
scheduling algorithm is presented in section II. The results of
simulation and analysis are described in section IV. Section V
concludes this paper.

II. System Model

The 0/1 constraint imprecise multiprocessor system is modeled
in this paper as a directed graph G which is called the program
graph. This is a dual directed graph as introduced in[4]. Each
edge E; (can appear more than once in dual graph G), a basic
unit of computation or task, is characterized by the following para-
meters. (We will use the term, computation or task, interchangeably.)

= P; = 1(E) : means a processor P; on which the computation E;

runs,

» ¢i(Ej) : processing times that may be either m; or m; + o;,
where m; and o; are the processing time of manda-
tory part M ; and optional part O; of E;, respectively.
m; and o; may take an arbitrary value.

Figure 1 shows one of possible models with 6 tasks, E;
through Eg, running on two processors, Py and P,. For instance,
tasks 3, 4, 6 run on processor P;, and task 1,2, and 5 run on
processor P>. Each node represented by Ny is used to connect
edges. If E; is an incoming edge to Ny ,and Ej is an outgoing

M;=3,0,=1 M=10-7 Me=6,0=3 Deadtine P o

Ready [0 o) 0] '0)
. =40 allocation

®
M=2,0,8 /’ \M,-4,0,=1
® (3 Deadline
time=0 =
M=40,"6  M;=2.0=8  M;=4,0s=7 =35

YE:)=P;, (Ex)=P;
WEx)=Py, (E)=Py
(Es)=P;, W(Ee)=P1

Fig. 1. A program graph G of system with 6 tasks.

edge from Ny, then computation E; must be completed before the
computation Ej starts its execution. In this case, the edge E; is
called an immediate predecessor of E; , and the edge E; is called
an immediate successor of E;. The precedence relations can be
derived from the control of flows of the program graph or the
communications. The sub-graph G(P;) is defined to be a subset of
the graph G in such a way that (Ei) is equal to P; for all Ey in
G(P;), This is a sub-graph corresponding to a set of tasks that are
running on processor Pi. Let Gy, be a sub-graph of the program
graph G where all the optional parts are ignored. It means c;(E;)
=m; for all E; in Gy, Let G, be a sub-graph of a program graph.
Then, G2 =G, U {O;} means that we add an optional part O ; to
the edge E; in G;, which gives a sub-graph of G, where i(E) =
m; + 0. In this case, we note O; & G,

Let Pred(E:) be the set of all predecessor edges of E; and let
Succ(E;) be the set of all successor edges E;. In our model, ready
times are assigned to all nodes Ny that do not have any incoming
edge. Deadlines are assigned to all nodes N that do not have any
outgoing edge. The nodes that do not have incoming edges are
called the starting nodes of the system while the nodes that do
not have outgoing edges are called the ending nodes of the
system. In the figure 1, for example, node 1 and 5 are starting
nodes and nodes 4 and 8 are ending nodes. Initially, only these
nodes have ready times or deadlines as shown in figure 1. The
modified ready time r; of each edge E; is the maximum value
among dx + my for all immediate predecessorsv Ei. The modified
deadline d; of a edge E; is the minimum among 1, - m; for all
immediate successors E;.

A sub-graph is schedulable if all edges finish computations
before their deadlines after immediate predecessors complete
executions. If G, is schedulable, we say that the imprecise system
is minimally schedulable. If a sub-graph G’ is schedulable, the
total error of G’ is defined as the sum of all o; where O;&G’.
The optimal error of a graph G is defined as the total error of a
sub-graph G’ of G, where there is no sub-graph G” of G such
that G’ is a sub-graph of G” and G” is also schedulable.

M. Scheduling Algorithm

The scheduling problem in this paper is a process to find a
schedulable sub-graph of a program graph G. In general, the
program graph can be constructed from source code with addi-
tional information like SDL[6]. Since the original program graphs
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if (<some conditional expression>) <some
<Blocki>, fitional <if >
else expression> ci=my+max{mzms
<Block2>, <Block3>
Figure2.1 Figure 2.2 Figure 2.3

Fig. 2. Sample program and corresponding program graphs.

<condition expression>

m;,0; : unchanged <if statement>

m; = m, + max(m; ,my)
m; = max(m; ,m,) 0; = max(m;+0; ,My+03) - max(m; ,ms)
©0; = max(m;+0; ,my+03) -
max(m, m)

Figure3.1 wheno, * 0 Figure 3.2 wheno,=0

Fig. 3. Program graphs when tasks have optional parts.

in general are too complex to manipulate, graph reduction is
required. One possible approaches is the method introduced by[6].
However, some modification is required to apply it to our algori-
thm. We will describe briefly the modification which explains
how to reduce the original program graph. And then, our model
of imprecise systems is derived.

When a task have mandatory and optional parts, we must
consider the context in which the task is located. For instance,
consider the classical program code in Figure 2.1. If <Blockl>
and <Block2> are precise blocks, (i.e, if they do not have any
optional parts,) we can reduce them into one <Block3>, as shown
in figure 2.2, whose computational requirement is equal to the
maximum value among the computation requirement of <Blockl>
and that of <Block2>. Eventually the three computation units can
be merged into one computation unit as depicted in Figure 2.3.

If <Blockl> or <Block2> has optional parts, we cannot always
reduce them into one block. Such blocks can be reduced into one
of the program graphs as shown in figure 3. In figure 3, my, oy,
my, 03, mi, and o3 are the computational requirements of the
mandatory part and optional part of <some conditional expres-
sion>, <Blockl>, and <Block2>, respectively.

Once the original program graph is reduced and translated to
program graph G as the form of figure 3, we begin to find a
schedulable sub-graph of G. Since the computational requirement
of the optional part can be arbitrary in our model, the general
problem of finding a sub-graph with the minimal error which is
scheduled to minimize the total error is NP-complete[7]. So the
heuristic algorithm might be a good candidate provided it produce
a schedulable sub-graph whose total error is near or equal to the
optimal total error. The proposed heuristic scheduling algorithm is
as follows.

Suppose a program graph G, and a list L of optional parts are
given. First, the modified ready times and modified deadlines for
all nodes in Gy, are calculated. Eventually the modified ready

Let G' = G,,, and L* =L ;
Calculate initial modified ready time and modified deadline for all nodes and edges;
while (L' *@) {
Select one (3, from L’ according to the longest optional first strategy,
andL'=L'-{0.}
if {(r;+my+0; > d; )
Reject 0, and total error = total error + oy;
else {
Check schedulability of all tasks Ey in G' that are running on processor
P, =1 () using theorem by Lawler and Moore, assuming c{Ey} = my + ox;
if (schedulable) {
G' =G U {0 };
c (G') =m + 0y ;
Let PS = { Ex | Ex € Pred(E;) U Succ(E)),
where E, € PS};
Update modified ready time and modified deadline for nodes from
which edge in PS is going out or to which edge in PS is coming ;
}
else
Reject O, and total error = total error + oy}

Fig. 4. Heuristic scheduling algorithm with the longest optional
first strategy.

times and modified deadlines for all edges in G, are also
calculated. This calculation can easily be done. Next, we select an
optional part O;. The selection of O; can be done by several
ways. One is to select the longest one among the optional parts.
Another way is to select randomly. Yet a third one is to select
the one with minimum laxity. The path with minimum laxity here
means a path where the difference, (the deadline of the ending
node-the sum of the ready time of the starting node and the sum
of the m; in the path), yields minimum.

If the condition r; + m; + o; <d; is not satisfied, then we can
conclude that the optional part O; cannot be scheduled in any
way. Even though this condition is satisfied, one cannot conclude
that O; is schedulable. So we have to check whether O; does not
invalidate the schedulability of other tasks. This can be done
using the famous theorem by Lawler and Moore. If the selected
optional part O; is schedulable and it also turned out that O; does
not affect the schedulability of other tasks, we schedule it and set
¢ to m; + o;, Otherwise, we rqject it.

At the end of this step, we get a new program graph G, and
L,. If the selected optional part can be scheduled, then G
becomes Gm U {Oi}, otherwise the graph leaves to be G, We
update L; with Ly =L -{0Q;}. Clearly G; is a sub-graph of the
initial program graph G.

Once a new program graph G is obtained, we perform the
same step again with G; instead of Gn. We can apply this
procedure repeatedly producing G, and L, G; and L; and so on.
The algorithm surely terminates because the size of the list L will
decease in each step. Figure 4 describes the algorithm in detail.

Theorem : The algorithm in figure 4 terminates and the graph
produced by the algorithm is schedulable.

Prrof. : The algorithm in figure 4 terminates eventually because
the number of optional parts in the list is finite and decreases in
each step of the ‘while’ loop. The schedulabilty is also guaran-
teed, since it is checked in every step of ‘while’ loop in which an
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Figure 5.a. Initial program graph G, for scheduling G in figure
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Figure 5.b. Result of scheduling O;
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Figure 5.c. Final graph scheduled

Fig. 5. Scheduling of the program graph shown in Fig. 1.

optional part selected from the list is added to the graph.

Figure 5 demonstrates the procedure of scheduling the program
graph shown in figure 1. Initially the list L; is equal to {O1, Oy,
03, O Os, Os). Modified ready times and deadlines are
calculated as in figure 5.a. Optional part O, with the largest
computational requirement is selected first. Its schedulability is
successfully checked and program graph becor.es as in figure 5.b.
Note that modified ready times and deadlines of tasks 1,2,4,5 and
6 are reevaluated as in figure 5.b. By repeating this procedure for
04,05,01,06, and Os, schedule shown in figure 5.c is obtained.
Optional part 0»,06,and O; are schedulable, but 01,04, and Os are
not. The total error becomes twenty which is sum of the compu-
tational requirements of 0,,0; and Os.

IV. Simulation Results

In this section, we present and analyze the results of the
simulation. The aim of simulation is to compare the performance

- Number of sub-tasks
2 ——6
131 -a-12
S cev--14
3
2 —-3-19
pel
z
Ratio of optimal error to sum of Oi
Fig. 6. Distribution of (Optimal Error/Sum of o;).
o 100 T
p —o—Longest
g 80 Optional First
@ 60 0~ Minimum Laxity
S 40 Path
o
S 2 —&—Random

6 12 14
Number of sub—tasks

Fig. 7. Distribution of the number of cases such that the total
error is equal to optimal error.

of the scheduling algorithm and the selection strategies of optional
parts. The sample models of the system under simulation are
chosen from the simple control application in{4]. The system
described in[4] consists of five tasks such as sensors, actuators,
and main control activity that are running on four processors
connected by a network. The program graph consists of twenty
eight nodes and thirty two edges. The model adopted for
simulation is a sub-graph of the program graph in[4]. The number
of nodes and edges are chosen according to the number of tasks.
However we need extend the tasks so as to have mandatory and
optional parts, because the sample by Natale is not designed for
the imprecise computation. The values from 1 to 10 are randomly
assigned to the computation requirements of mandatory parts and
optional parts. The ready times and deadlines of the starting node
and ending nodes are fixed throughout the simulation of each
model. ’

Four sample models of the systems were considered: the
simplest one has only 6 tasks, and the others have 12, 14 or 19
tasks, respectively. For each model of the system, we generate
randomly (100 * number of tasks) pairs of integers from 1
through 10 for the computation requirements of the mandatory
and optional parts of each task. Figure 6 shows the distribution of
(Optimal Error / Sum of o;) for each model.

For each system, we run the simulation with the algorithm in
figure 4. We consider three different selection strategies. The
longest optional first strategy selects the task with the longest
optional part among those in the list. The second strategy selects
the best fit one in the path with the minimum laxity. The third
strategy selects one randomly.

To compare the strategies, we use following metrics. The first
metric is defined as a number how about frequently the total error
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Fig. 8. Distribution of (Total Error-Optimal Error)/Optimal Error.

of the schedule produced by the scheduling algorithm hits the
optimal error. The optimal error is calculated by considering all
possible combinations of the placement of optional parts. (If the
number of optional parts is n, there are 2" possible cases). Figure
7 shows this distribution. As we can easily note, the longest
optional part first strategy hits more frequently than the other two
strategies, and the decreasing rate is also much slower than others.

The second metric is the distribution of (Total Error - Optimal
Error) / Optimal Error. Figure 8 shows these distributions for the
cases that the number of tasks is 12, 14 and 19, respectively. The
case with $ix tasks is- omitted because the behavior of three
selection strategies did not show any significant difference. As the
number of tasks increases, the longest optional part first strategy
outperforms the other strategies.

V. Conclusion

We presented a heuristic scheduling algorithms of 0/1 constraint
multiprocessor systems that are modeled by directed graphs. The
complicated initial graph is reduced to a modified version in [4].
Starting from the program graph, a heuristic algorithm attempts in
this paper is applied to find schedulable sub-graph. The total
errors depend heavily on the selection strategy by which optional
parts are selected. The results of simulations show that the longest
optional part first strategy outperforms the random selection
strategy or the strategy based on the minimal laxity path.
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