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Generalized Rearrangeable Networks with
Recursive Decomnosition Structure

Myung-Kyun Kim, Hyunsoo Yoon, and Seung-Ryocul Maeng

Abstract

This paper proposes a class of rearrangeable networks, called generalized rearrangeable networks(GRNs). GRNs are obtained from the Benes
network by rearranging the connections between stages and the switches within each stage. The GRNs constitute all of the rearrangeable
networks which have the recursive decomposition structure and can be routed by the outside-in decomposition of permutations as the Benes
network. This paper also presents a necessary condition for a network to be a GRN and a network labeling scheme to check if a network
satisfies the condition. The general routing algorithm for the GRNs is given by modifying slightly the looping algorithm of the Benes network.

1. Introduction

Multistage interconnection networks(MINs) have been widely
used in multiprocessor systems to connect thousands of processors
and memory modules. A MIN is called a rearrangeable network
if all permutations can be realized by one pass through the
network. A number of researches for rearrangeable networks and
their routing schemes have been done for many years[4, 5, 6,
12]. An NXN MIN can be constructed into k stages, each of
which consists of (Na) axa switches. A MIN with aXa
switches, where @ >2, can be easily extended from a MIN with
2 X2 switches, so MINs with 2 X2 switches are only considered
and logN indicates log:N in this paper. It was shown that the
number of stages that is necessary for an NXN MIN to be
rearrangeable is 2logN-I [9]. Many researchers tried to find
rearrangeable networks with 2logNV(or 2logN-1) stages and routing
algorithms for those networks. Benes network{4] is a rearrange-
able network which is composed of 2X2 switches and many
routing algorithms for the Benes network were proposed[3, 8,
11]. Lee[6] proved that an omega-omega'] network is rearrange-
able and suggested a routing algorithm for the network. Yeh and
Feng[12] introduced a class of rearrangeable networks, called the
equivalent Benes networks, which are topologically equivalent to
the Benes network, and proposed a switch labeling scheme to
show the topological equivalence relationships. Recently, Kim et.
al.[5] introduced a class of rearrangeable networks, called symme-
tric BPMINs(Bit-Permute Multistage Interconnection Networks),
which have the same recursive decomposition structures as the
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Benes network.

The rearrangeable networks such as the equivalent Benes
network[12] and the symmetric BPMIN][5] can be obtained from
the Benes network by rearranging the connections between stages
and rearranging the switches within stages. Both of the above
rearrangeable networks contain only the networks which have
buddy property[1] between the switches of adjacent stages. This
paper further generalizes the rearrangeable networks and proposes
a class of rearrangeable networks, called generalized rearrangeable
networks(GRNs). The GRNs can be obtained from the Benes
network by rearranging the inter-stage connections and rearrang-
ing the switches within stages. GRNs have the same recursive
decomposition structure as the Benes network and are controllable
by the outside-in decomposition of permutations. It is shown that
GRNs consist of all of the rearrangeable networks with recursive
decomposition structure. This paper also presents a necessary
condition for a network to satisfy to be a GRN and a network
labeling scheme to check if a network satisfies the condition. A
general routing algorithm for the GRNs is given by modifying
slightly the looping algorithm of the Benes network.

Section 2 describes a few preliminary definitions and lemmas
on permutations and defines the GRNs. Section 3 describes a
necessary condition for a network to satisfy to be a GRN and a
network labeling scheme to check the condition. A general
routing algorithm for the GRNs is also described in this section.
Section 4 describes the conclusion.

II. Generalized Rearrangeable Networks

In an NXN MIN, where N =2", the stages are numbered 0, 1,
-+, 2logN-2 from left to right and the switches of each stage are
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P

Cross state

Straight state

Fig. 1. Two possible states of a switch.

numbered 0, 1, -+, N/2-1 from top to bottom. Each switch has
two possible states: the straight state and the cross state as shown
in Fig. 1. The following describes some backgrounds about
permutations and then discusses the rearrangeability of MINs by
their permutations.

. .Definition 2.1 Let S=1{0, 1, -, N-1}. A permutation of a set
S is a bijection from § onto S. The set of permutations on § is
denoted by Gs. :

" Gs is a symmetric group under the composition of permixtations
and has N! elements[7]. A network ¥ is called rearrangeable if
and only if every permutation P in the symmetric group Gs is
passable on the network. Let ¢ and B be two networks and let
[=a - B be a network obtained by concatenating o and £.
Every permutation P paséable on the network [ can be described
as a product of two pefrnutations P, and Py such that P=P,
- P3; = P3(P,), where P, is the permutation that corresponds to
the ‘setting of the network & and P to that of the network A.

Thus, the set of permutations passable on the network obtained
by concatenating two networks are described as follows.

Definition 2.2 Let I, be the set of all permutations passable
on network ¢ and I be the set of all pelmuiations passable on
network . The set of permutations passable on network 7 =c
- B is defined as follows: i

r,={P=P, P3s|P, €T, and Pz € '3 }.

Lemma 1 Let ¥ be a rearrangeable network, and o be a
network generating a fixed permutation P, and B be a network
generating a fixed permutation P, then @=¢ - ¥ - £, which
is a serial concatenation of the networks ¢, ¥, and S, is also
rearrangeable.

Proof Let I, be a set of permutations passable on the
network ¥, then I,=Gs from Lemma 1. Let P be an arbitrary
permutation in Gs. If P is passable on the network @, then the
network @ is rearrangeable. Because ¥ is rearrangeable, it can
route the permutation ( P;'- P - P;') where p;' and P;' are
the inverses of the permutations P, and P, respectively. If the
switches of the network ¥ are set to route the - permutation
( P;'+ P - P;"), then the network ¢ comes to route the permu-
tation P, - ( P;' - P - P;")- P/~P. Thus, the network ® can

route all of the permutations in Gs, so @ is rearrangeable. O
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Fig. 2. 16X 16 Benes -network, BNjs, with recursive decomposi-
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Fig. .3. The network structure of a CRN CNy.

 The Benes network is known as a rearrangeable network with
recursive decomposition structure. Fig. 2 depicts the recursive
decomposition structure of NXN (N =16) Benes network, BNy.
By removing the switches and their incident connections of stage
0 and 2n-2, the network BNy is decomposed into two - disjoint
sub-networks BN%.. and BN..., each of which is (N/2)X(N/2)
Benes network and the two links of each switch in nesting level
Ly are connected to different sub-networks of nesting level L,
Similarly, the sub-network BN'%.-( BN'..) can also be decomposed
into two disjoint sub-networks BNY.. and BN}.-( BN%- and

BN%-). In general, by removing the switches and their incident
connections of stages from 0 to i-1 and from 2n-2 w0 2n-i-1
where 1 <i < n-i, the network BNy is decomposed into 2
disjoint sub-networks such as BNY.., BNY.-, -, BN}, each of
which is 2"'X 2" Benes network. The two links of a switch
in nesting level L, 0<i<n2 are connected to different
sub-networks of the next nesting level Lis;. .

Using Lemma 1, the 'NXN Benes network, BNy, can be
generalized to an NXN canonical rearrangeable networks(CRNs),
CNy, by substituting each BN%. with CN%. such that CN%-= «5-

BNY. - .. where o4 and g%. are arbitrary 2" X2" connections
and 1 <m<nand 0 <k < 27 "-1. Fig. 3 depicts the network
structure of an NXN CRN, CNy. The CNy also has the same
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recursive decomposition structure as the Benes network. By
removing the switches of stages from 0 to i-1 and from 2n-i-1
to 2n-2 where 1 < i < n-1, the network CNy is decomposed into
2' disjoint sub-networks such as CN%.-, CNb-, -+, CNZ5', each
of which is a 2" x2"" CRN. The two links of each switch at
nesting level L; are connected to different sub-networks of the
next nesting level Li+;. The CRNs can further be generalized by
rearranging the switches within stages. Thus, we can define the
NXN generalized rearrangeable networks as follows.

Definition 2.3 The class of networks obtained from the NXN
Benes network, BNy, by the following construction procedure is
called an NXN generalized rearrangeable network(GRN) and
denoted by GNx:

1. substitute each sub-network BNY%. with CN%. such tha CN'-t
= ¢t » BN% - g where of. and gi. are arbitrary 2™ % 2"
connections and 1 <m < n and 0 < k < 2"™-1, and

2. rearrange the switches within stages.

Theorem 1 All of the NXN GRNs are rearrangeable.

Proof From Lemma 1 and the above discussions on the
construction of GRNSs, it can be easily seen that the theorem is
true. O

Theorem 2 The GRNs consist of all of the rearrangeable
networks with recursive decomposition structure.

Proof From the above construction procedure of the NXN
GRN3, it can be easily seen that the GRNs consist of all of the
rearrangeable networks with recursive decomposition structure,
where the two ports of each switch at nesting level L; are
connected to different sub-networks of the next nesting level
Li+;. Thus, the theorem is true if it can be shown that the
networks, where the two ports of a switch at nesting level L; are
connected to the same sub-networks of the next nesting level
Li.;, are not rearrangeable. Since a GRN is obtained from a
CRN by a simple rearrangement of the switches within stages, if
it is shown to be true for the CRNs, then the same is also true
for the GRNs. Let CNy be a CRN obtained from a GRN CNy
by the rearrangement of the switches within stages. Let’s assume
that the two ports of a switch, say X, of stage 0 of the CNy are
commected to the same sub-network CN', of the mext nesting
level 1 as shown in Figure 4. Let Y be a switch of stage 2n-2
whose two ports are connected to different sub-networks of the
next nesting level 1. Let i and j be the two input terminals of
X, and k and [ be two output terminals of Y. Since only one
commection link exists between CN%, and the switch Y, the
permutations, where the destinations of i and j are the output
terminals of the switch Y, can not be routed in one pass. Thus,
the CRN CNy is not rearrangeable, and neither the GRN GNy.
From the above fact, the theorem is true. O
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Fig. 4. An example of Theorem 2.
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Fig. 5. Examples of the CRN and GRN. (a) a CRN. (b) a GRN
obtained from (a).

Lemma 2 Both of the symmetric BPMINs [5] and the
equivalent Benes networks [12] are included in the GRNS.

Proof The symmetric BPMINs and equivalent Benes networks
have the same recursive decomposition structure as the GRNSs,
thus the theorem is true. O

Fig. 5 depicts examples of a GRN and a CRN which is not a
symmetric BPMIN. Fig. 5(b) is a GRN obtained from the CRN
of Fig. 5(a). The numbers in each switch represents the mapping
relationships between the two networks. The first haif of the
network in Fig. S(a) is a 16X 16 zeta network nonequivalent to
the baseline network [2], and the network of the last n-1 stages
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is the reverse of the first n-1 stages of the zeta network. Thus,
the GRNs include the rearrangeable networks constructed from
the nonequivalent MINs as shown in Fig. 5.

Ill. Network Labeling Scheme and Routing
Algorithim of GRNs

1. Network Labeling Scheme of GRNs

Before the description of the labeling scheme, we suggest a
necessary condition for a network to be a GRN. The network
labeling scheme checks if a network satisfies the condition, and
labels the switches and ports of the network according to the
sub-network structure if the labeling succeeds. Since a GRN is
obtained from a CRN by simply rearranging the switches within
stages, the network labeling scheme of a GRN is the same as
that of a CRN. Thus, for the sake of easy description, we will
describe a necessary condition and a network labeling scheme
for a CRN. From the network decomposition structure as shown
in Fig. 3, an NXN CRN, CNy, satisfies the following conditions:

(C1)’ cNY%;, and CN\,, are (N/2)X(Nj2) CRNs independent
with each other, ]

(C2)’ the number of switches of stage O(and 2n-2), which are
connected to the sub-networks CNY%, and CNY, Iis
(NJ2), and

(C3)’ the two ports of each switch of stage O(and 2n-2) are
connected to different sub-networks of stage 1(and 2n-3).

In general, there are 2 sub-networks at nesting level L; in
CNy such as CN%.-, CNY.-, -+, CN23%. Each sub-network of
nesting level Li, CN',. where 0 <j < 2-1, has the same
recursive decomposition structure as the network CNy, and is
divided into two disjoint sub-networks, CN%.-. and CN%:L, at the
next nesting level L;:;. Therefore, in a CRN CNy, all of the
sub-networks of nesting level L, 0 < i < n-2, satisfy the same
conditions as the above, thus those conditions can be generalized
as follows. An NXN CRN CNy satisfies the following three
conditions, for all / and j where 0 < i < n-2 and 0 <j< 2i-l,

(C1) each sub-network of nesting level L, CNi.., is divided
into two disjoint sub-networks, CN%... and CNZHL, at
the next nesting level Li.;, _

(C2) the number of switches of stage i(and 2n-i-2), which are
connected to the two sub-networks of nesting level L,

CN%.... and CN3rL, is 2™, and

(C3) the two ports of each switch of stage i( CN%.- and

2n-i-2) in the sub-network CN'.. are connected to two

different sub-networks, and CN%tL, from each other.

If the CRN and CN are replaced by GRN and GN in the above
conditions, (C1), (C2), and (C3), they become the necessary
conditions for a GRN.

The network labeling scheme checks whether the network
satisfies the above three conditions (C1), (C2), and (C3), and
labels the switches of the network, the output ports of the
switches at stages from 0 to n-2, and the input ports of the
switches at stages from n to 2n-2 if the labeling succeeds. The
switches of nesting level Ly are labeled as NIL(empty string),
and the switches of the nesting level L; in the sub-network
GN’,.- are labeled as an i bit string bi; b -+ by = j, where. b,

0 <k <i-1,is 0 or 1. The output ports of the switches of stage
i(and the input ports of the switches of stage 2n-i-2) in -the
sub-network GN',.. are labeled as O if they are connected to the
sub-network of nesting level Li.;, GN%.-, and labeled as 1 if
they are connected to the sub-network of nesting level L.,
GN%tL. The labeling of the sub-network of nesting level L,
GN',.., is done recursively by first labeling the sub-networks of
nesting level Lij, GN%-- and GNZ*!, and next labeling the
switches and theif ports of nesting level L; in the sub-network
GN',-.- The network labeling procedure, Label_GRN, is described
in Fig. 6. _

The procedure Label GRN(GN, i, j, SW, T) labels the switches
and their ports of the jth sub-network of nesting level L; of the
network GNy, GN’... SW is a switch in the sub-network GN'y.
where the labeling begins, and T is an i bit string of size i to
be labeled in the switch SW, where T = b.; bi; -+ bp=j. Label_
GRN(GN, i, j, SW, T) begins by first labeling the switch SW as
T and next labeling the two sub-networks of nesting level Li.;

Procedure Label GRN(GN, i, j, SW, T)
begin
Label SW as T;
if (i = n-1) then return;
Next_SW1 = the switch of stage i+! connected with the upper
link of SW;
Label GRN(GN, i+l, 2j, Next_SW1, T - 0);
Next_SW2 = the switch of stage i+l connected with the lower
link of SW; :

Label_GRN(GN, i+I, 2j+1, Next_SW2, T - 1);

if (Check_Labels(i+1, 2j, 2j+I) = -1) then stop; /[* Violates (CI)ﬂ */
Propagate_Labels(i+1, 2j, 2j+1);
if (Number_of SW() = 2™"' OR Number_of SW(2n-i2) = 2"

then stop; /* Violates (C2) */
if (Check_Ports(i) = -1) then stop; /* Violates (C3) */
Set_Labels(i); . i
return; [* Labeling done successfully. */

end

Fig. 6. Network labeling procedure for a GRN GNy.
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GNZ... and GNZ''. The labeling of the sub-network GN%..-
starts from a switch of stage i+1, Next_SW1, which is
connected with the upper output link of the switch SW, and
labels the switch Next_SW1 as T -0 = 2j. The labeling of the
sub-network GNZ<l: starts from a switch of stage i+1, Next_SW2,
which is connected with the lower output link of the switch SW,
and labels the switch Next_SW2 as T - 1 = 2j+1. After that, it
checks the switches of stages i+1 and 2n-i-3 labeled by the
labeling of the two sub-networks GN%..- and GN%t., and stops
the labeling if those switches are doubly labeled, which means
the violation of the condition (C1). If the labeling of the two
sub-networks GN%.-. and GN%:. is done successfully, then the

switches of stages i+1 and 2n-i-3 in the sub-networks GN',.. and
GNZ:L. propagate their labels to the mext outer stages i and

2n-i-2, respectively. Each of the switches receiving the labels at
nesting level L; labels itself as the most significant i bits of the
received labels, and labels each of its two ports as the least
significant bit of the label. To satisfy the conditions (C2) and
(C3), the number of switches of stage i(or 2n-i-2) receiving the
labels must be 2™ (condition (C2)), and the two labels of each
switch received through the upper and lower ports must be
different only in their least significant bits(condition (C3)). The
procedure completes the labeling of the sub-network GN'y... suc-
cessfully if those conditions are satisfied, and stops the labeling
if not. Initially, the labeling starts by calling Label GRN(GN, 0,
0, SE(0,0), NIL), where SE(0,0) denotes the switch of stage O
connected with the input terminal O.

Definition 3.1 The functions used in the network labeling

procedure Label GRN are the following.

o Check_Labels(i+1, 2j, 2j+1) is a function to check whether
the switches of nesting level L, in the sub-networks

GNZ... and GN%:., are doubly labeled, and return -1 if so
and O if not.

o Propagate_Labels(i+1, 2j, 2j+1) is a function to propagate
the labels of the switches of nesting level Li.; in the sub-
networks GNZ... and GN%I!. to the switches of the next
nesting level L.

o Number_of SW(i) is a function to return the number of
switches of stage i which receive the labels propagated from
the sub-networks GNZ... and GN%XL.

o Check_Ports(i) is a function to check whether the two labels
received by each switch of nesting level L; are different
only in their least significant bits, and returns -1 if it is not
true.

o Set_Labels(/) labels each switch of nesting level L; in the
sub-network GN',.. as the most significant i bits of the
received labels, and labels each of its two ports as the least
significant bit of the label.
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Fig. 7. Network labeling examples which violate the conditions.
(a) 2logN-1 stage shuffle-exchange network which violates
the condition (C2). (b) an example of networks which
violate the condition (C3).
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Fig. 8. Network labeling example of the GRN of Fig. 5(b).

Fig. 7 and Fig. 8 depicts the labeling examples for some
networks. Fig. 7(a) depicts the network labeling result of 2logN-1
stage shuffle-exchange network which has no recursive decompo-
sition structure. The number of switches of stage 4 receiving the
labels from the two sub-networks of nesting level L;, which are
labeled as 000 and 001, respectively, must be 2 not 4, thus the
labeling fails because it violates the condition (C2). Fig. 7(b)
depicts the labeling example of network which violates the
condition (C3). In the figure, the two output ports of the dotted
switch are connected to the same sub-network of nesting level
L;, which is labeled as 00, and those of the hatched switch are
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also connected to the same sub-network of nesting level L,
which is labeled as Ol. Thus, the network labeling fails.” Fig. 8
depicts a successful network labeling example for the GRN of
Fig. 5(b). '

2. Routing Algorithm of GRNs

A GRN can be labeled by the labeling procedure Label GRN.
Each switch keeps the labels of its two ports given by the
labeling procedure. Let the ports of the switches in each stage
be numbered 0 to N-1 from top to bottom, and let P be an
arbitrary permutation to be routed on a GRN GNy. The routing
of P in GNy is done as follows. At-first, the input terminal i, O
< i< N-1, is tagged as its destination P(i), and the output
terminal i is tagged as i. The routing procedure consists of n
steps. At step i where 0 <i < n-2, the input-side tag set is
propagated to the input ports of the switches at stage i according
to the connection between the stages i-I(the input terminals
when i=0) and i, and the output-side tag set is propagated to
the output ports of -stage 2n-i-2 according to the connection
between the stages 2n-i-2 and 2n-i-1(the output terminals when i

=0). Next, the switches of stage i and 2n-i-2 are set by the. .

modified algorithm of the looping algorithm of the Benes
network. After that, the input-side and output-side tag sets are
propagated to the ports of stage i+l and the ports of stage
2n-i-3, reépectively, and it continues the next step i+l. After the
step -2, the same set of tags meet at each switch of stage n-1,

and so, at stage n-1, each switch can be set by connecting the -

input and output ports with the same tags. Fig. 9 presents the
routing algorithm for a GRN. The routing algorithm Route_
GRN(GNy, P) sets the switches of the GRN GNy to route the
permutation P.

Definition 3.2 The following notations and function are used
in the routing algorithm Route_GRN.

oThe input side and output side tag sets are denoted by /
and D. At the beginning of routing step i, f(or D) is tagged
at the input(or output) ports of stage i(or 2n-i-2) and I(k)(or
D(k)) denotes the tag given to the input(or output) port & of
stage i(or 2n-i-2). ‘ ' ’

oThe two ports in a switch are called buddies and buddy(x)
denotes the buddy port of port x.

oThe two input side and output side ports with the same tags
are called peers, and peer(7), where T is an input(or ouiput)
side tag, indicates the peer port of the port with tag T.

oThe control setting result is stored in a switch control
matrix M[0:2n-1, O:N-1]. When 0 <5 < n-1, M[s, O:N-1]
denote the connection states of switches of stage s from
their input ports to the output ports. If Mfs, ¢/ is 0, the rth
input port of stage s is connected to the output port with

Procedure Route_GRN(GNy, P)
/* Input: A GRN GNy and a permutation P
Output: Control setting matrix M[0:2n-2, O:N-1} */
begin .
for k = 0 to N-1 do /* Initialize the tag sets [ and O %/
I(k) = P(k); ' ’ ‘
D{k) = K,
endfor
for s =0 to n-2 do  /* Routing steps from O to n-2. */
for j = 0 to N-1 do

t=j
while (M[s, t] =" NIL) do /* Form a complete
loop */
Mls 1] =0, -
u = peer(l(1)); -z

M[2n-s-2, u] = 0,
M[2n-s-2, buddy(u)] = 1,
v = peer(D(buddy(w)));

Mfs, v] = I
t = buddy(v);
endwhile ’
endfor -
Propagate_Tags(i);
endfor

for k = 0 to N/2-1 do
if (I(2k) = D(2k)) then
Mfn-1, 2k] = 0,
Mn-1, 2k+1] = O,

J* Step n-1 ¥/

else )
Min-1, 2k] = 1,
M[n-1, 2k+1] = 1;
endfor .
end /* End of Routing */

Fig. 9. Routing algorithm for a GRN GNy. -

label 0, and, otherwise, the input port is connected to the
output port with label 1. When n <s <2n-2, Mfs, O:N-I]
denote the connection states of switches of stage s from
their output ports to the input ports. If M/s, ¢] is 0, the rth
output port of stage s is connected to the input port with
label 0, and, otherwise, the output port is connected to the
input port with label 1. Initially, all elements of M are
initialized as NIL(no value).

o Propagate_Tags(i) is a function to propagate the input(or
output) tags at the input(or output) ports of -stage i(2n-i-2) |
to the switches of the next inner stage i+l(and 2n-i-3).
through the switches of the stage /i and 2n-i-2) and
connections between { and i+1(and 2n-i-3 and 2n-i-2).

For example, the network labeling result for the GRN of Fig.
5(b) is shown in Fig. 8. For a given permutation P such that
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Fig. 10 shows the routing result of P in the GRN of Fig. 5(b).
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Fig. 10. Routing result of the GRN of Fig. 5(b).

The computation time complexity of the routing algorithm of
Fig. 9 is O(NlogN). If each switch of the GRN keeps the labels
of it and its two ports, the routing algorithm can be parallelized.
At step i where 0 < i < n-1, there are 2 disjoint sub-networks
of nesting level L; such as GN%-, GNY.-, -, GNAz', which can

be routed in parallel.
IV. Conclusion

The rearrangeability for 2logN(or 2logN-1) stage MINs were
studied by many authors and some of them produced incorrect
results [10]. The rearrangeability problem of 2logN(or 2logN-1)
stage MINs needs more theoretical research.

This paper has suggested a class of rearrangeable networks
called the generalized rearrangeable networks(GRNs). GRNs are
obtained from the Benes network by rearranging the connections
between stages and the switches within stages. Networks in this
class have the recursive decomposition structure and are controll-
able by ‘the outside-in decomposition of permutations like the
Benes network. The GRNs consist of all of the rearrangeable
networks with recursive decomposition structure, and include the
rearrangeable networks constructed from the nonequivalent MINs
[2]. This paper has also suggested a necessary condition for a
network to be a GRN and a network labeling scheme to check
whether a network satisfies the condition. The GRNs can be
routed by modifying slightly the looping algorithm of the Benes
network. The computation time complexity of the routing algorithm
is O(NlogN). The computation time complexity could be improved
by parallelizing the routing algorithm.
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