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Abstract

A multiprocessor microprocessor named SMPC(scaleable multiprocessor chip) that contains two IU (integer unit) is presented in this

paper. It can execute multiple instructions from several tasks exploiting task-level parallelism that is free from instruction dependencies,

and provide high performance and throughput on both single program and multiprogramming environments. The TU is a 32-bit scalar

processor especially designed to boost up the performance of string manipulations which are frequently used in RDBMS(relational data

base management system) applications. A memory management unit and a data cache shared by two IUs improve the performance and

reduce the chip area required. The SMPC is implemented in VLSI circuit by custom design and automated design tools.

1. Intreduction

The performance of microprocessors can be improved by de-
creasing cycle time or increasing the number of instructions that
are executed in parallel. Pipelining divides the execution of an
instruction into many stages in order to reduce the machine cycle
time between each stages. However, the pipelining has physical

limits such as clock skew which prevents further dividing the
pipeline stage and complicates the pipeline control and trap
handling.

Superscalar technique and VLIW architecture allow two or
more instructions to be executed concurrently. A superscalar
processor uses hardware to detect independent instructions and to
dispatch them. In a VLIW processor design, it is the responsi-
bility of a compiler to schedule codes so that dependencies
between instructions are never violated. But, in either case, the
instruction-level parallelism exploited by processors limits the
number of instructions that can be issued together to at most
four instructions on the average in typical programs. Four-way
superscalar microprocessors generally produce the performance of
about 2.5 IPC. Even microprocessors that can execute up to
eight instructions take a little advantage over four-way super-
scalar processors and added functional units will be idle most of
time. Thus the increment of the ability of executing multiple
instructions from one thread could not be an optimum solution

to improve the performance.
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With the help of advanced integrated circuit technologies that
can integrate the huge number of transistors, multiprocessor
microprocessor is becoming increasingly attractive as a design
option. The multiprocessor microprocessor executes multiple
instructions from several tasks exploiting task-level parallelism
that is free from instruction dependencies, and provides high
performance and throughput on both single program and
multiprogramming environment. In this paper, we present a
multiprocessor microprocessor, called SMPC, in which two IUs
(integer units) are connected in an efficient way.

II. SMPC Architecture

The SMPC microprocessor consiSts of two IUs, two instruction
caches, one shared data cache, four small level-l MMU, one
large shared level-2 MMU, and a bus unit as shown in Fig. 1.
The overall architecture of SMPC was designed with a goal that
it should consume minimal chip area by simplified architecture
while offering efficient communications and synchronizations
between IUs.

1. Integer Unit

The IU is based on the SPARC 32-bit RISC architecture,
which defines a processor capable of executing at a rate
approaching one instruction per clock cycle [2]. In addition to
the basic SPARC v8 instruction set, IU can execute the
SMIS (String
Manipulation Instruction Set) and MCIS (Multiprocessor Control
Instruction Set).

following two sets of extended instructions
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Fig. 1. Block diagram of SMPC.

The SMIS is devised for a need to boost up the performance
of string manipulations which are frequently used in RDBMS
applications. The SMIS includes load/store update instructions
which load or store data together with effective address, load/
store string instructions which load or store unaligned string in
aligned form, and compare string instructions which compare one
string register with another. These instructions can be processed
as a single cycle instruction and if, instead of the SMIS, other
instructions are to be used, two or more instructions would be
involved. The SMIS makes it possible to enhance the perfor-
mance of applications and to make programs compact with an
optimizing compiler that is aware of the SMIS. The implemen-
tation of the SMIS requires a little additional hardware and does
not degrade the overall speed since it is not on the critical path
of IU.

The MCIS is proposed to support the programming environ-
ment in multiprocessor configurations. Each thread executed in
IU should be synchronized if programs are to run as desired.
This is accomplished by global variables and bartier registers. A
lock array stores the addresses of the global variables and
accesses to these variables are monitored. If there are multiple
accesses from IUs, the sequence of accesses is arbitrated. The
barrier registers store the barrier state of each IU to synchronize
threads. The MCIS is composed of lock instructions, lock set
and lock clear, and barrier instructions, barrier set and barrier
clear. These instructions allow a multiprocessor to be used in
efficient and simple way. Besides the MCIS, the SMPC offers
interrupt distribution, reset generation and global clock to support
multiprocessor. ‘ .

The TU block diagram is shown in Fig. 2. By the implemen-
tation of a simple scalar architecture the IU has low design
complexity to reduce silicon die size and to shorten design time.
The IU has a simple five-stage pipeline for integer instructions
that consists of F (fetch), D (decode), E (execute), M (memory)
and W (write) as shown in Fig. 3. The instruction register for
each stage stores the instruction flown from the previous stage
with the progress of the clock signal. Then, the instruction
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Fig. 2. Integer unit block diagram.

register is decoded to generate control signals for functional
units. Particularly for instructions that require multi-cycle, IOPs
(internal operation codes) are used. They are not regular codes
defined by the instruction sets but are decoded in the same
way as the instructions are processed. The IOPs are generated
from a IOP table in the decoder and are inserted into the
E-stage instruction register in case of multi-cycle instruction.
The control unit includes decoder and IOP generator. OPRD,
OPEX, OPM and OPW are the instruction registers corres-
ponding to each pipeline stage. Such a time stationary decoding
scheme with IOP makes the design of control unit simple and
easy to implement.

The IU has three hardware interlocks, those are, register inter-
lock, load interlock and store interlock. The register interlock
can be removed by forwarding data. Possible forwarding paths
are E-D, M-D(E), W-D(E) and load aligner-D(E). The paths
through which the data are forwarded to D-stage provide source
operands. The forwarding paths to E-stage supply the data for
store instruction that follows. These forwarding paths are used
when the source register field of an instruction and the desti-
nation register field of the next instruction are matched. The
load interlock due to true dependencies delays the instruction
that follows a load instruction by one clock cycle. The store
interlock is caused by the fact that the store address may
conflict with the address of the next store or load instruction on
the bus since the store address is asserted during two cycles to
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Fig. 3. Five stage pipeline.

check cache tag for a hit. In such a case, the store instruction
becomes a two cycle instruction. The IU supports precise
exception. Except for data access trap that is detected at M-stage
and serviced at W-stage, all the traps are serviced at M-stage.

Thus, the traps detected at D or E-stage are delayed until the

trapping instruction arrives at M-stage.

ALU is responsible for integer arithmetic/logical computations.
A 32-bit conditional sum adder is used for the ALU. To reduce
die area, neither integer multiplier nor integer divider is included,
~ but step multiply with early-out and step divide instructions are
implemented. The ALU has an additional logic for SMIS and
MCIS but its overhead is negligible. A separate 30-bit adder is
provided to calculate branch addresses.

2. Memory Management Unit

The MMU provides one 32-bit virtual address to 36-bit physi-
cal address translation per cycle in most cases. To accomplish
this, a TLB (translation lookaside buffer) is used to cache the
virtual-to-physical address mappings of the most recently trans-
lated addresses. For the case of SMPC, two small level-1 TLBs
are used for two MMUs, ie., a two-entry instruction TLB for
instruction address translations and an eight-entry data TLB for
data addresses. Because there are two IUs in the SMPC, total
four level-1 TLBs are used.

If accesses to the level-1 TLBs are missed, a fully-associative,
128-entry, level-2 shared TLB will be consulted for the missed
page translations. Single die implementation allows IUs to share
a large level-2 TLB without considering of pin counts. If an
access to the level-2 TLB is a hit, the TLB miss penalty is one
clock cycle. In addition, if there are multiple accesses to the
level-2 TLB, the arbitration of requests adds upto three cycles to
the miss penalty. However, the increased penalty does not
degrade the performance too much because level-1 TLB miss
occurs rarely and the probability of multiple misses is quite low.

The MMU uses a tree-structured page table in order to reduce
page table sizes in the main memory. A level-2 TLB miss is
handled by a hardware mechanism, that is, table walk that searches
for a page table entry through a series of four page tables. To
reduce the latenéy for a table walk, a page table pointer cache
is used to decrease the number of steps.

There are cases where an access to the level-2 TLB is missed
during table walk due to other requests. ‘In these cases, the

penalty of level-2 TLB miss is further increased. However, it is
noticeable that the penalty hardly differs from that of conven-
tional non-shared TLBs. Also in the conventional architecture, a
table walk process cannot be initiated until other table walk
process releases a main memory bus.

One advantage of the shared level-2 TLB is that it can reduce
the total size of the TLBs. In addition, the table walk hardware
with a page table pointer cache requires large area. The shared
TLB of the SMPC make it possible to decrease the number of
the table walk hardwares from four to one, further reducing the
chip size. It is also advantageous that it can improve the perfor-
mance by processors that prefetch the TLB entries of shared
pages for each other while preventing storing multiple copies of
the same TLB entry into TLBs.

3. Cache Memories

Each IU executes its own instruction stream fetched from its
private instruction cache. There are two instruction caches for
two IUs and each cache is a 8-kbyte, 2-way set-associative
cache. Line size is 32-byte and replacement policy is LRU. It is
virtually-indexed and physically-tagged cache and does not have
the problems caused from address aliasing, which is difficult to
resolve in case of virtually-tagged caches. The instruction cache
need not to snoop bus transactions because the memory address
space containing instructions is often marked as read-only pages.
Therefore, flush instruction should be used if self-modifying code
are to operate properly.

The advantage of shared-memory multiprocessors is the simplest
and the most general programming model that allows easier
development of parallel software and supports efficient sharing
of instruction and data. But it suffers from potential problems in
achieving high performance because of the inherent contention in
accessing shared resources, which is responsible for longer
latencies of shared memory. Private caches using write-back
scheme as a write policy help to reduce average latencies, to
increase effective memory, and to reduce bus utilization, achieving
the same effect as multiprocessor systems with a wider bus. How-
ever, this solution imposes serious cache coherency problem that
multiple copies of the same cache data block may exist in several
caches. In this case, one processor may be unable to load the
latest data immediately from its private cache because another
processor modify its private cache only. If processors are freely
allowed to update their own copies, an inconsistent view of the .
memory leads to program malfunction. Therefore, cache coher-
ency protocol must be maintained to provide the latest data to
any processors.

However, the data cache in SMPC does not need cache
coherency protocol for two IUs because it is shared between
IUs. There is no private copy of data for each IU of the SMPC.
This feature of cache makes the memory operation faster and the
hardware implementation associated with cache coherency simpler.
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In addition, this shared data cache offers an efficient method to

- communicate between two IUs. One IU can communicate by
simply writing data into the shared cache memory where another
.1U -can read it immediately. Thus, the data cache allows multi-
threaded programs to be executed much faster than ever.

The data cache is a 8-kbyte, 4-way set-associative, virtually-
indexed and physically-tagged cache. The write policy is write-
back. While it is not necessary to maintain cache coherency
protocol between two IUs, cache coherency within SMPCs must
be supported to operate properly. The overhead of sharing the
data cache is that cache tag should be three-ported to satisfy two
memory requests from each IU and one snooping request from
bus simultaneously with no time delay. And the associativity of
cache memory should be higher in order not to degrade the
cache hit rate when independent programs are running on the
SMPC. But the same prefetching effect as the shared TLB
improves the performance of cache system when parallelized
application is running. _

The cache coherency protocol to support multiple SMPCs is
_maintained by the use of the five states of a cache line and the
bus snooping mechanism. Basically, the five states are invalid
(D), exclusive (E), shared (S), owned (O) and modified (M). But
this number can be reduced to four state or three state to
accommodate various system configurations. With these states,
write-invalidate snoopy cache responds to processor loads, pro-
cessor stores or bus transactions.

It is necessary to communicate and synchronize between IUs.
The bus unit of SMPC provides global variables and barriers
that are accessed by the MCIS. Global variables solve inter-
- processor communication problem and barriers perform synchron-
ization between processes. The bus umit is responsible for
connecting efficiently one SMPC with another, as well as intér-
facing these SMPCs with external cache memory or with memory
sub-system through external bus. The system using multiple
SMPCs results in a bus-based shared-memory multiprocessor system.

M. Simulation and Physical Design

The architecture of SMPC is validated by the performance
" simulations. And it is described in HDL (Hardware Description
Language) to verify its functionality. Then, the SMPC layout is
designed by both hand and automated synthesis tools on the
basis of the verified HDL. Finally, timing simulation is performed
to correct errors caused from delays and to estimate the operation

frequency.

1. Performance Evaluation

The advantage of multiprocessor lies on the fact that it is pos-
sible to achieve high performance by assembling large numbers

of slow processors. We developed IU with simple architecture
regarding the area required. The preceding simulation we per-

" formed shows that the performance of IU is from 1.2 to 1.3 CPI

[3]. And the previous work shows that the shared level-1 cache
architecture usually outperforms the shared memory architecture
substantially [4]. Therefore, simulations are focused on the perfor-
mance evaluation of the shared MMU.

We conducted trace-driven simulations to find TLB miss rates
and cache miss rates. Our workload for trace-driven simulations
comes from the SPEC92 benchmark suite [5]. From that suite,
nine programs were selected and were run on the SMPC IU
simulator, which was previously developed and verified. Then,
instruction addresses, data addresses and timing information are
captured into a trace file. In order to reduce the size of the
traces from long running programs, the trace was sampled down

"to a manageable size. The traces were .fed as inputs to the

MMU and cache memory model written in C language.

First, to determine the number of level-1 TLB entries, we
simulated them with varying the number. For- the instruction
level-1 TLB, two entries are appropriate with 0.86% miss rate
on the average. In case of the level-1 data TLB, more than two
entries are required to keep the miss rate as low as instruction
TLB since data address space is usually wider than instruction
address space. Fig 4. shows the number of level-1 data TLB
entries versus the miss rates in logarithmic scale. In this figure,
for clarity, only five simulation results out of total nine simula-
tions are drawn. From these simulation results, eight entries were
selected as proper number showing 1.81% miss rate on the
average. Next, TLB miss rates and cache miss rates were measured
as shown in Table 1. As expected, the small-sized level-1 TLBs
exhibit relatively high miss rates. However, the overhead to handle
a level-1 TLB miss is just one cycle and it only increases the

- total execution time by 1.53% on the average. Therefore, we

expect that the prefetching effect can compensate for the increased
overhead and that the reduced size of MMUs can allow more
chip area to be used in other useful architectural features.

2. Functional Verification

Top-down approach is used in design phase of the SMPC
microprocessor. The architecture of the SMPC is defined and is
described in HDL. Then, simulation environment, in which we
would expect the SMPC architecture to be used in real systems,
is also built in HDL to evaluate the performance accurately and
verify the operation correctly. By doing this, after the implemen-
tation from this HDL description, the microprocessor can provide
proper interface and minimal errors. Fig 5. illustrates this ;
functional verification scheme. 4

The workloads to verify its functionality are two sorts.
Synthetic workload is written for the purpose of verifying the
operations that is not usually occurred with user codes and real
workload includes user application programs that are executed
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Table 1. TLB miss rates and cache miss rates.

L1 ITLB | L1 DTLB | L2 TLB |Inst. Cache |Data Cache
miss miss miss miss miss
gce 1.8% 5.4% 0.013% 4.8% 4.5%
fpppP 029% | 0.89% 0.001% 8.3% 2.1%
tomcatv | 0.002% 2.8% 0.007% 0.005% 12.4%
spice 1.7% 3.1% 0.001% 1.5% 8.6%
dnasa 0.82% 0.03% 0.002% 0.004% 20.2%
| espresso 12% 0.7% 0001% | 1.1% 0.45%
doduc 0.74% 2.63% 0.002% 4.3% 2.5%
xlisp 1.1% 0.69% 0.001% 0.82% 22%
matrix 0.001% 0.048% 0.01% 0.005% 5.1%
Average | 0.86% 1.81% 0.004% 2.31% 6.45%

under the normal conditions. For the verification of the SMPC,
both kinds of workloads were used. As synthetic workloads,
about 140 programs written in assembly language were executed.
During the execution, the results were automatically checked
against the expected results on a cycle-by-cycle basis and the
correctness of results was proved. Many user programs written in
C and FORTRAN language were also executed as real work-
loads on the SMPC system described in HDL. The simulation
results were compared with the results from real SPARC work-
station, From those simulations, we knew that the SMPC can
achieve from 1.4 to 1.8 IPC with various application programs.

3. Custom Layout

Register file and execution unit in IU consume large chip area
and affect the operation speed of microprocessor. Therefore, we
designed the layout of the register file and the ALU manually
to get optimal design. Eight overlapped windows constitute the
register file and the circuit to resolve overlapping addresses is
included. As illustrated in Fig. 6., the register file has four ports,
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Fig. 6. Register file.

one for writing and three for reading, and total number of
registers is 136 x 32-bit. Unlike conventional SPARC processors,
three read ports allow store instruction to be executed in one
cycle. Predecoder is partitioned to accommodate windowed regi-
ster, thus reducing access time and power consumption.

The ALU in the execution unit is implemented to process
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additional instructions from the SMIS and the MCIS. Particularly
for the SMIS, it is required to detect null characters from
operand register. The detection logic was designed to operate in
parallel with 32-bit addition, keeping the total delay time to a
minimum. The custom design of the ALU optimizes the place-
ment of cells and the routing area.

4. Physical Design

The verified HDL description is converted into logic circuits
by synthesis except for the register file and the ALU designed
by custom layout. In the synthesis phase, SRAM is generated for
the cache memories and complex control logic is synthesized
into finite state machine. Other arbitrary blocks that do not
affect the performance are synthesized with standard cell library.

First, the complete netlist of the SMPC are verified by per-

forming static timing verification that detects electrical errors,
ramp delays, critical paths and clock skew. Then, the timing
‘simulation with the same stimulus that used in the verification of
HDL is performed. The correctness of these results .is determined
by comparing with the results of previous HDL simulations. At
‘worst case conditions, that is, 3.0V Vdd and 85°C temperature,
- the operation frequency is higher than 60MHz.

- With automated placement and routing tools, we designed the
layout of the SMPC microprocessor. It will be fabricated on
0.6um TLM CMOS fabrication process. The core size of the
SMPC with two IUs is 11.0mm x 9.75mm. The layout of the
SMPC is shown in Fig 7.

IV. Conclusions

In this paper, we present the SMPC microprocessor in which
two 32-bit IUs are connected efficiently to a shared MMU, two
instruction caches -and a shared data cache. The SMPC is a
simple scalar multiprocessor which has low design complexity to
reduce the silicon die size and to shorten the design time. The
SMPC microprocessor can execute two tasks simultaneously,
exploiting task-level parallelism. The IU was designed with the
goal that the processor should be as fast as possible by the
simplified implementation of the architecture, keeping the area to
a minimum. In addition to the basic instruction set, the IU can
execute two sets of extended instructions. The SMIS was devised
to boost up the performance of string manipulations which are
frequently used in RDBMS applications. The MCIS is proposed
to support the programming environment in multiprocessor confi-
guration. For fast page translations, a small level-1 TLB is
employed. If an access to these level-1 TLBs is missed, a large
level-2 TLB will be consulted for missed page entry. The data
cache shared by two IUs allows the prefetching effect to im-
prove the performance of system when a parallel program is running.

Top-down approach is used in design.phase of the SMPC.
After the performance evaluation with trace-driven simulations,

Fig. 7. SMPC layout.

the architecture of the SMPC is described in HDL. Then, simu-

lation environment, in which we would expect the SMPC archi-

tecture to be used in real systems, is also built in HDL to verify
the operation correctly. Verified description is converted into
logic circuit by synthesis and custom layout by hand. After layout,
timing simulation including the information of wire connections
shows that the operation frequency is as high as 60MHz in
worst case conditions. The die size of the SMPC with two IUs
is 11.0mm x 9.75mm on 0.6um TLM CMOS fabrication process.
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