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Analysis of Electromagnetic Scattering by a
Resistive Strip Grating with Tapered Resistivity on
Dielectric Multilayers
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Abstract

In this paper, the E-polarized electromagnetic scattering problems by a resistive strip grating with
tapered resistivity on 3 dielectric layers are analyzed to find out the effects for the tapered resistivity
of resistive strips and the relative permittivity and thickness of 3 dielectric layers by applying the
Fourier-Galerkin moment methods. The induced surface current density is expanded in a series of
Jacobi-polynomial P/= #( -} of the order a=0 and A=1 as a kind of orthogonal polynomials, and the
tapered resistivity assumes to vary linearly from 0 at one edge to finite resistivity at the other edge.
The normalized reflected and transmitted powers are obtained by varying the tapered resistivity and
the relative permittivity and thickness of dielectric layers. The sharp variation points are observed
when the higher order modes are transferred between propagating and evanescent modes, and in gen-
eral the local minimum positions occur at less grating period for the more relative permittivity of di-
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electric layers. It should be noted that the patterns of the normalized reflected and transmitted powers

for the tapered resistivity are very much different from those of the uniform resistivity and perfectly

conducting cases. The proposed method of this paper can solve the scattering problems for the tapered

resistive, uniform resistive, and PEC strip cases.

1. Introduction

Scattering properties of the array of con-
ducting strips in free space or on dielectric
slabs have been gathering attention in the
fields of optics and electromagnetics. Many
analytical and numerical methods have been
devised and employed to determine these
properties.

Richmond!"! added edge mode (to take care
of the singularities) to the Fourier series for
the unknown current density expansion on per-
fectly conducting (PEC) strips, and then used
the Fourier-Galerkin moment methods (FG-
MM), The scattering problems from a periodic
array of resistive strips were analyzed by
using the spectral-Galerkin moment method
(SGMM)2-3 and the FGMM:*, respectively.
Electromagnetic scattering problems by a PEC
strip grating over a grounded dielectric layer
were analyzed by using the point matching
method (PMM)® and the FGMM¥17 respect-
ively. Volakis et al. ¥ considered TE-charac-
terization of resistive strip gratings on a di-
electric slab using a single edge-mode expan-
sion. Yoon and Yang*® analyzed the scattering
problem by a perfectly conducting strip gra-
ting on dielectric multilayers.

In this paper, we solved numerically the
E-polarized scattering problems by a resistive
strip grating with tapered resistivity on 3 di-
electric layers by using FGMM, and the pur-
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pose of this paper is to find out the effects for
the relative permittivity and thickness of di-
electric layers and the tapered resistivity of
resistive strips on 3 dielectric layers. The
induced surface current density is expanded in
a series of Jacobi-polynomial P, #( - ) of the
order a=0 and A=1 as a kind of orthogonal
polynomial®, and the tapered resistivity
assumes to vary linearly from 0 at one edge to
finite resistivity at the other edge. We apply
the continuity to the electromagnetic fields in
boundary planes to obtain the unknown
coefficients, and the resistive boundary con-
dition is used for the relation between the
total tangential electric field and the electric
current density on the resistive strips. The nu-
merical results for the normalized reflected
and transmitted powers are corﬁpared with
those of the existing papers, and the resistive
strips assume to have infinitesimal thickness.

II. Formulation of the Problem

We consider the periodic array of thin resis-
tive strip with tapered resistivity on 3 dielec-
tric layers illuminated by a E-polarized plane
wave, Fig. 1 shows the cross section of the
resistive strip grating which are uniform in
the y direction, E-polarized plane wave with
its electric vector parallel to the edge of the
resistive strip gratings is incident at arbitrary
angle ¢. The regions 1 and 5 are free space,
the regions 2, 3, and 4 are dielectric layers,
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Fig. 1. Geometry of the problem,

the relative permittivities of the dielectric
layers 2, 3, and 4 are &, &3 and &, respect-
vely,

The incident electric field £ and scattered
electric field B and total electric field £,
E, F,, E- in the regions 2, 3, 4, and 5 can be

E = Zi; Ey ek xsind pjky z cosé (1)

S xX
E = 3} Eyeitoxsit S 4 p=ivnlz=1) p=jtmx/s (D)

n==%

Vi -8 ki 28,
Vom { Vi —8: 9 '97 (3)
N k; <8,
E_m &\ Eoe—}k(,xsm¢
Z [ Bue ims + Cpielmi] e /2mds— (4)
\Y, 2 — R° ’ kizzﬂf
”!li:{ kl ﬂn s i= 2, 3, 4 (5)
NEE. K<E

. o«
EIS — 2\. Eoe—jk“ X sing Z T" ej}’,,:efj‘lmzx/: (6)

n=—x

written as!®
where k= w~/me, k=2n/1 is the wave
number of free space and A is wavelength, u
and & are permeability and permittivity of free
space, E, is the magnitude of the incident elec-
tric field and is set to be 1 in this paper, & = o
Ve & = kJe, i==2, 3, 4, B.= kysing +2nn
Is, A., Bu, Cu, and T,, are unknown coeffici-
ents to be determined, and the tangential mag-
netic field of each region can be obtained by
using Maxwell’s equation (v X E = —juwH ).
Applying the continuity of tangential elec-
tromagnetic fields to the boundaries at z =0,
t,, and r;, we can express C,, In terms of B,; as'®

Cpo= Pn2 B (7)

where

:[ exp( — 2N t7) (nnz_nn3)+Pn1(?1n2+’7n3)
pr2 eXp( _2] Nn3 t2) (ﬂn2+’1n3) +pn1(r]n2—r,n3)
exp( =2 t2) (8)

:|: exXp( =21t 13) (a3 =) (aa— V)
P L exp (=27t 13) (st 1) (ot — 7,
+ (et 11ma) (s +72) ]
F (3= 1a) (s +7)

xp(—2jnms ts)  (9)

Since the tangential electric field must be
continuous at z=1, using eq. (7), we can ex-
press B, in terms of 4, as

ejkotl cos¢ 6n _+_ A"
BnZ - e’]"!nzll +p"2 e/'lnztl (10)

where &, is the Kronecker delta function.
The surface-current density J (x) on the
strips can be expanded in a series of Jacobi-
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polynomial P, #( - ) of the order a=0 and £
=1 as a kind of orthogonal polynomials!* with
unknown coefficient f,, J (x) can be written as

7(x)=9y eiksind Y £ p (a8 (x/p),
p=0

—h<x<h. 1D

From the tangential magnetic boundary con-
dition, we get

kO COS¢ ejkoll cost — Z {Anyn - ”nZ(BnZ e_j”"zt)

n=—2

—Cppeimti)} gmitnnxls . — h< x<p

=w,mp§0 £, P« (xlh). (12)

Substituting eq. (7) and (10) into eq. (12),
multiplying both sides of eq. (17) by P, #
(x/h) and integrating over the region —s/2<
x<s/2, we obtain the unknown coefficient 4.
as

k i Gpn
A, = _ ol Y f (hﬁ"* )
N p=0 yn_pn3

ko cosp +p.:
+ejkoncos¢ (—O—M)—i ) On (13)
Yn‘“an
where
Gon = j" Py« 8) (x[h) eizls dx (14)
—h
_ ﬂnz(e_j""l" —Pmé€ Yz "_1) (1 )
Pn3 = [ e _j'lr/zfl—}—pnz ej’?rlztl ] 5

and n,= «/mw/& is the intrinsic impedance in
the free space.
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The resistive boundary condition on the
resistive strips is

E +E =R(x)J (x), z=1 (16)

where R(x) is the tapered resistivity on the
resistive strips, its unit is ohms per squares
and is suppressed throughout. The tapered
resistivity on the resistive strips in this paper
assumes to vary linearly from ( at one edge to
finite resistivity at the other edge.

R(x) = R(1+x/h), —h<x<h. (17)

where R, is an arbitrary constant, From eq.
(1), (2), (16) and (17), we get

e8]
ejkgl[ cos¢ + Z Ay e-j2mzx/s

n=—0

f R(x) P,=® (x|h), —h<x<h. (18)

0

[l ngk}

P

Multiplying both sides of eq. (18) by P,= #
(x/h) and integrating over the region —h<x<
h, we get

Zo HTp= ¥ 4. Gou'+ H,,
= n==m
¢=0,1, 2, © (19)

where

Gort = j” P, B (x[h) e ~12mds dx (20)
—h

nﬁjh R(x) Py« 2 (xlh) Pjl«# (xlh) dx (21)

—h
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H, = j"’ P« 8 (x/h) ek cosd gy (22)
—h

where an * denotes the complex conjugation,
eq. (21) can be solved by using the closed
form™, but eq. (20) and (22) are solved by
using the extended Simpson’s rule!®™ because
these equations don't have the closed form.
Let us replace 4, in eq. (19) with that of eq.
(13). This yields the following system of sim-
ultaneous linear equations,

Mz

JoZyp=V49=0,1,2 - M (23)

0

I

P

where

Fomo - §- <_Gp_

Z,=T,+
ap p Yo Dus

) Gt (24)

n=—N

Vq = — g~ Jhoncosd

N ( kocos$ +pus

(75 ) }Gur + H,. (25)

n==N

To obtain numerical results, we truncate the
series in eq. (23) and inverse the matrix to
solve these equations for the coefficients f,,
and then we obtain the reflection coefficient I,
=A, from eq. (13). The transmission coef-
ficient T, is expressed as¥

B1jng € ~imete g=imsts (e/knicost 5, + A4,)

(7],,4_yn) (e_j""z“'i‘p,.z elmen) DPnd Pns

T, (26)

where

P = e/l ( 1+_’1L )
Nn3

eme3 (1= ) ( :if; ) @

pnsze_jnn'j!z (1-}—& )
Nn2

Fenat (1— It ) Pa. (28)

Nn3

[Il. Numerical Results

We solved numerically by using FGMM the
E-polarized scattering problems by a resistive
strip grating with the tapered resistivity on 3
dielectric layers, and the purpose of this paper
is find out the effects for the relative permit-
tivity and thickness of 3 dielectric layers and
the tapered resistivity of resistive strips. The
normalized reflected and transmitted powers
can be obtained by using eq. (13) and (26), re-
spectively. To confirm the validity of our nu-
merical results, some numerical results are

—— 8,2=1, E'3=1, ‘:"=1 ------- 5,2=2v 6'3=1, S"=2
memm 6= o=l 725 —mm 6572, g1, £,=3

mmem 5072, £471, €35
0.40 T T T T T T

~——— R = 100(uniform resistivity) .

035 F B

ower

o 0.30
0.25 X
0.20 :
0.15 ;
0.10 -
0.05 N

Normalized reflected

0.00 R N L .
0.0 05 1.0 15 20

Grating period s [A]
Fig. 2. Geometrically normalized reflected power
(¢ =30°, R=100, w/s=0.25 6,=01, 1,
=0.07, ,=0.04[2]).
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Mode n= -1
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04 F b O Rel 3] -
0.2

00

Normalized reflected power

-0.2
T \| R =2, 5is=1, 6,452
0.4 === =2, g5=1, =25 ~
06 L - €72 53=10 5=3 ]
L e €572, €471, £,%3.5 J
-08 -
P RO SO NV TNV N YN N MR R
00 02 04 06 08 10 12 14 16 18 20

Grating period s [A]

Fig. 3. Normalized reflected power of higher order
mode n=-1(¢ =30°, R=100, w/s=0,
25, = 01, t, = 007, ;= 004[1] )

Mode n=1

_ 01 r T . : . r
g
3 0o R S .
o

-0.1
8 5
> Rl — =2, ey 6,422
§ 03 F  =-m= 572 £g=1. =25
T g4 ; """" €072, ga=1, £,=3
.g | e =2, g571, 5,235
® -05F —— R=100(uniform resistivity)
1S F O Ref [2] :
[ !
o 06 :' =
Z 07 L I " 1 . I .

0.0 0.5 1.0 15 20

Grating period s [2]

Fig. 4. Normalized reflected power of higher order
mode n=1 (¢ =30°, R=100, w/s=10.25,
n=0.1, ,=0.07, t;=0.04[A]).

compared with those of the existing paper.

Fig. 2 through Fig. 9 show the variation of
the normalized reflected and transmitted po-
wers for the relative permittivity of 3 dielec-
tric layers versus the grating period s[A] for R,
=100 and ¢ =30°, and the numerical results of
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Mode n=-2
. 04 T T T T T
o -
2 03 I
8_ 0.2 = —— R= 100(uniform resistivity)
2 01| 0 Ref.[2)
.g 00 F e
= 01} ]
L o2fF o=t 2= 1, =1 B
8 03 e 2972, 55=1, £,72 ]
.;N 0.4 [ === 372, g5=1, £,=2.5 h
g 05 P o= £272, £4=1, £,=3 h
s os b T 272, 5571, 5,35 . R
prs b H )
07 s 1 . L N I X
0.0 0.5 10 1.5 2.0

Grating period s [A]

Fig. 5. Normalized reflected power of higher order
mode n=-2 (¢ =30°, R.=100, w/s=0.
25, 1=0.1, = 0.07, ;=0.04[1]).

Mode n=2
0.005 v r . T v

0.000
-0.005
-0.010

-0.015

-0.020
| e 672 o=, 5,235

-0.025 |- — R = 100(uniform resistivity)
0D Ref [

-0.030 . L - L L ! .
0.0 05 1.0 1.5 2.0

Grating penod s [A)

Normalized reflected power

Fig. 6. Normalized reflected power of higher order
mode n=2 (¢ =30°, R =100, w/s=0.25,
1 =0.1, =0.07, 1,=0,04[1]).

resistive strip with uniform resistivity (R(x)
=]100) are also shown for comparision. And
the short dots of Fig. 2 through Fig. 9 denote
the numerical results of resistive strip with
uniform resistivity (R(x)=100), and the white
squares show the numerical results of the ex-
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Mode n=-3

_ 002 . T . . . ;
o 4
g 0.00 9y ; .........
8 L

002
© 3
2 004}
8 3 e™1s 3=l 5,=1
% 006 = e ::'2=2‘ :‘r3=1- 514=2
5 008 TTTT w2 ngh 525
o b 60%2 g, £,,=3
'-c_—u' -0.10 __ et E,2=2. l:,3=1, :,_,-'-3,5
£ .0.12 | —— R =100(uniform resistivity)
S O Ref}2
Z 014 | -

" 1 2 ) n 1 "
0.0 0.5 1.0 15 20

Grating period s [2]

Fig. 7. Normalized reflected power of higher order
mode n=-3 (¢ =30°, R=100, w/s=0.
25, 1=0.1, .= 0.07, 1;=0.04[A]).

Mode n=3
T T M 1
——— R= 100{uniform resistivity,

0.0002
0.0000 |-
.0.0002 |
.0.0004
-0.0006 |
-0.0008 |-

Normalized reflected power

-0.0010 | _'ﬂ.f; 1 Evf;
A R s
V0092 o st ne2s  [pEEEH
00014 | e 22 gm0, 7 =3
200016 | === 5720 6571, 5,235
-0 0018 . . . . .
0.0 05 1D 15 20

Graling period s [A}

Fig. 8. Normalized reflected power of higher order
mode n=3 (¢ =30°, R=100, w/s=0.25,
1=0.1, ;= 0.07, t,=0.04[1]).

isting paper Ref!®, so our numerical results
are in good agreement with those of the exis-
ting paper.

In Fig. 2, it should be noted that the nu-
merical results of resistive strip with tapered
resistivity (R.=100) are very much different
from those of resistive strip with uniform res-
1stivity (R(x)=100) below the grating period

1.0 [ v T T T v T T
o9 —— R= 100(uniform resistivity)
08 -
0.7 L
086 N
os |
04 | 55
03l £
0.2 L

Normalized transmitted power

0.0 o5 10 15 20
Grating period s [1)

Fig. 9. Geometrically normalized transmitted po-
wer (¢ =30°, R=100, w/s=0.25 ,=0.
L, .=0.07, 1;=0.04[1]).

$=0.66[1], and the sharp variation points take
place at the grating period near s= (.66[1]
and 1.32[1]. Fig. 3 through Fig. 8 show the
normalized reflected power of the higher order
mode n= —1, 1, —2, 2,
and Fig. 9 shows the geometrically normalized

—3, 3, respectively,

transmitted power. To denote propagating and
evanescent modes in eq. (3), the values of
propagating and evanescent modes are
expressed as positive and negative values, re-
spectively. The sharp variation points of the
geometrically normalized reflected powers are
observed when the reflected power of higher
order modes are transferred between propa-
gating and evanescent modes. And In general
the local minimum positions of the geome-
trically normalized reflected power occur at
less grating period for the more &,

Fig. 10 and Fig. 11 show the variation of the
geometrically normalized reflected and tran-
smitted powers for the relative permittivity of

dielectric multilayers versus the incident an-
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gl gt g =t e 572 53=1, 6,2
=== 572,547, £,725 - £572, 55=1, 6,3
e 5522, 571, 6, =3.5

10 T T T T T T T T T

—emm— R = 100(uniform resistivity}
08 |- 0O Ref.{2)

- PEC strip case

O Ref [1)

Normalized reflected power

0 10 20 30 40 50 60 70 80 90
Incident angles [degrees])

Fig. 10. Geometrically normalized reflected power
for angles of incidence (h=0.3[A], s=
6(a], R.=100, ,=0.1, ,=0.07, 1;=0.04
(a]).

bl P ATERCIRES Tt =2, 5=, 8, =2
mmmm g2, 5571, €528 e =2, 2371, 8,473
meemerme £9=2, 59=1, £,=3.5

08 17—

T T 7

07 -

0 Ref.[2)
- PEC strip case

T 1
] ,\ — R = 100(uniform resistivity}]
iy

Normalized transmitted power

Incident angles [degrees]

Fig. 11. Geometrically normalized transmitted
power for angles of incidence (h=0.3[1],
s=16[1], R=100, 1 =01, =007, ;=
0.04{a]).

gles for R, =100. The white circles denote the
numerical results of the existing paper Ref !l
which treats the problem of the PEC strip
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case, the short dashes denote the numerical
results of the PEC strip case (R(x)=0), so our
numerical results are in good agreement with
those of the existing papers Ref.® and Ref.",
Finally, the uniform resistivity and PEC
strip cases can be obtained by replacing the
values of R(x) in eq. (16) with 100 and 0,
repectively, so this method can solve the
scattering problems for the tapered resistive,
uniform resistive, and PEC strip cases.

IV. Concluding Remarks

In this paper, the E-polarized electromag-
netic scattering problems by a resistive strip
grating with tapered resistivity on 3 dielectric
layers are analyzed to find out the effects for
the tapered resistivity of resistive strips and
the relative permittivity and thickness on 3 di-
electric layers by applying the FGMM. The
induced surface current density is expanded in
a series of Jacobi-polynomial P, #( - ) of the &
=0 and #=1 as a kind of orthogonal polyno-
mials, the tapered resistivity assumes to vary
linearly from 0 at one edge to finite resistivity
at the other edge. And in general the local
minimum positions of the geometrically nor-
malized reflected power occur at less grating
period for more relative permittivity of dielec-
tric multilayers, It should be noted that the
numerical results of the tapered resistivity are
very much different from those of the uniform
resistivity and the PEC strip cases. And the
sharp variation points of the geometrically
normalized reflected power are observed when
the reflected power of higher order modes are
transferred between propagating and evan-
escent modes. The proposed method of this
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paper can solve the scattering problems for
the tapered resistive, uniform resistive, and
PEC strip cases.
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