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Adaptive Formulation of the Transition Matrix of Markovian Mobile

Communication Channels

*Seung Keun Park

Abstract

This study models mobile communication channels as a discrete finite Markovian process, and a3 Markovian jump lincar

syslem having parallel Kalman filter type is applied. What is newly proposed in this paper is an equalion for obtaining the

transition matrix according to sampling time by using a weighted Gaussian sum approximation and its simple calculation

process. Experiments show that the proposed method has superior performance and reuires computation compared to the

existing MJLS using tthe ransition matrix given by a statistical method or from priori information.

I. Introduction

Recently, development in chipsels has activated resear-
ches on equalizer algorithms requiring much computat-
ional burden, a typical example of which is the Maximum
Likelihood Sequence Estimation Technique [1]. Lawrence
applied the Kalman {ilter which is one of Maximuim Like-
lihood Sequence Eslimation Techniques to an adaplive
equalizer algorithm [2]. After that, studies on adaplive eq-
ualizer using the Kalman filter have been progressed to
produce a fast Kalman filter algorithm [3], and further to
introduce parallel Kalman filter algorithm using (Gaussian
sum approximation [4]. However, fast Kalman filter al-
gorithm has weaknesses in stability. And Gaussian sum
approximalion is computationalty complex and burden-
some because of the parallel Kalman (ilter number which
is exponenlially increasing according to time variation,
thus requiring a suboplimal scheme. [n mobile communi-
cation, the base station is relatively free compared lo a
mobile station in lerms of space issue and complication in
calculation process, and therefore, adaptive equalizer al-
gorithm requiring a large amount of calculation may be
applied thereto. That is, an ecqualizer having complicated
and large compulational capability can be used solely for
reverse channels. Since the standards for mobile com-
munication at preseni classify channet coeflicients into ur-
ban, rural, etc., the channel environment of a mobile
station is randemly varied to be urban or rural depending
on time.

These channels are defined to be Markovian maobile
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communication channels in this paper, and Markovian jump
linear system(MJLS) model, in which a channel coeflicient
is assumed to be a discretely finite random variable, is cs-
tablished and applied to the mobilc communication en-
vironment. Particularly, in the cxisting Markovian jump
linear system, the transition matrix has been given by a
statistical method or from priori information ; whereas,
this paper presents, and shows along with experimental
results, an equation which enables estimation of trans-
ition matrix, which is the core of Markovian jump linear
system model, by using observation errors of Gaussian

sum approximation according to time.
II. Kalman Filter Algorithm

The Kalman filter is composed of a state equation and
an observation equation shown in Equations (1} and (2),

where the subscript ‘k’ is the time sampling:

Xe= FXg- +Gug n

Me=CX +us 2)
In Equation (), X, is a state vector showing (D +1)-

lap delay, and «x is a binary random sequence in which

probabilities of generating 0 and 1 are p and 1-p and its va-

riance is p{1-p). The struclures of F and G are as follows:

¢ ..o 0
1 0 0
F=(0 1 ... 0
o ... 1 0
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In Equation (2), v is an observation variable, and v; is
an observation noise, white Gaussian noise whose mean
is 0 and variance is R. Also, channel coefficient vector C
is defined in Equation (3), where the superscript T means

transposition :

€y
C2
CT=| : (3)

Cn

The Kalman filter algorithm can be obtained from Equ-
ations (1) and (2) as follows:

X =FX{4, . +Gp
Py =FPy_ypy FT 40
e=y—CY T,

K= Pou CT[CPyu CT +R] (4)
Xoe =Xuaor T Kser (5)

Pl:/b = Pb/l -1 chpm-l
where,

P =Ay0, 31, oy Yamdd

g=p1-pi

XS = E(XG- /34

Puior = ElXe— X XX =X i V4]
Py = E[(X»*X,',';:‘“)(XrX:}:“")’/y*l

As is shown in Equation (4), the inverse matrix is obla-
ined during the calculation process of Kalman gain (K3).
Generally, the greater the matrix size is, lhe more compli-
cated and difficult the calculation of inverse matrix is.
However, development of symmetry of covaniance Py,
and chipsets makes it possible to obtain an estimalor at
real time ustng the Kalman filter. In Equation (5), Kalman
gain (Ki) assumes the role of a weighted value with re-
spect to an error. That is, when Kalman gain (Ka) is
large, the state estimator depends on information of the
observed value. And the decision processes of a receiver

are as follows:

wk—-D)=1, Xp=(l +D)= p
wk—-D)=0, X1 +D)<p

However, a model composed of Equaltions (1) and (2)
has a weakness that the channel coefficient is fixed. In
other words, the channel coefficient in Equation (3) has a
constant during the estimation process;however, the
channel cocfficient in mobile communication may be
assumed to bc a random variable since channel environ-
ment is variously changed by fading.

The model described in this paper is to propose a
Markovian jump linear system algorilhm in which the
channel coefficient is assumed to be a random variable
having a discrete finite coefficient, for a finile channel en-

vironment.
II. Proposed MJLS Algorithm

The model presented in this paper uses Equstion (6) in-
stead of Equation (2)

e =C@) X +0x 6)

The sequence @4: ={#y, -, 8} is 2 Markovian random
variable having a discrete and finile value, where the
priori transition probability is defined Equation (7):

PEY T =Pr{@k 1 =8;/0=8), V 1<i, j<m ]

What is mosl importanl in a state estimator of Baye-
sian approach method is a posteriori probability density
function. If the probability density function f(Xs-\/v*~")
is assumed (o be known, (he total probability theorem
will yield Equation(g)

f(X.-./f")=}§ FXaer/@rer, P f @5 (8)

In the above equation, f(Xg-1/@4-1, ¥*7') is assumed
to be a Gaussian probability density function G(X,-,:
XiZus-vs Paoypoy) with mean X 7“7 and covariance Py_ 4.
Further, if f(@:-1/y*"") is expressed in terms of the

weighted value a} /., . we have Equation (9) as follows:
f(Xk—H’}'h_l)z E a(.:)vlll—IG(Xl—l ;me)—| > Pl:’—l;’b—l) )
=1

Accordingly, a state estimator can be obtained by recur-
sively determining posteriori probabilily density function

S(Xa/¥) by using f(Xa-1/3*"").
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The posteriori pdl’ f(X/¥*} is updated with the follow- PO =PV (@) PP

e = T ye-t ik -)

ing algorithm (5],

step L: f(@r— /¥t ") = O

step 2: fF(Xa—1/@r-1, ¥* )= f(XifOs-1, ¥}
step 3: f(Xe/Or 1, ¥ )= f(XifO, ¥
step 4: f@x/¥* ) = f(©f )

step 5: f(Xaf@s, ¥~ ) = f(Xe/O%, )

Recursive calculation may be summarized as follows.

(step 1)
“m—- = Z p' - 'ﬂ':n—m—n
(step 2)

GX; Xm0 Pip-d)

where the average is X = FX;*Th., +Gp, and co-

variance is Piy_ = FP u  FT +0.
(step 3)
G(Xﬂ ;X:;‘::‘Iﬂc (ﬁl/:—u)

o 1) . [¥3) R
where 1he average X 5u; and covariance Py, _, arc:

k=1 k(1
) P.l “A-ny-l
Dy =
a,,/,_.

mecod /) et}
Xm t Z ‘Uﬁ/ﬁ . e

Pom = E @R {Pie-y
+(X1u | an)(xma:‘|ﬂ - xmaiilz))r}
(step 4)

<

g, - -2he GOHCOWET, COIPHLCTO) HR),

Xy =

Z 2%, G COIX m?, C@) P, CT@) +R)

jet
pit ' =afy, Vi=1,2, - m
(step 5)
G(X.;Xm"_'(,ﬂ. P‘f?.t—l
mean )

: 1 B
where the average X /i~ and covariance Py, are:

K =PY_COFICO)PY,. .CTO) +R)
Xmm N X:?:-?] +K{’](y}—C(Q)X:;TW')

The result of the above calculation brings in a posterion

probability densily function as shown in Equation (10}):
f(Xk,/y‘}z Z a(;}‘G(Xk X:}fdﬂ Pu‘) “0)
y=1

From these equalions, a stale estimator and covariance

are oblained as follows:
m
m;’l
gl E apn Xin

m
Pl-fﬁ 1__ Q'H“ {Pl“ +(X:}‘f""—X,,“)(Xm“’)—/\’m“")r}
=1

And their decision processes are:

wk—Dy=1. Xg(Q+D)=>p
wk—D)=0, X" +0)<p

An algorithm using the MJLS is more complicated than
the Kalman filter. The reason for il is that the channel
coeflicient is assumed to be a random variable in the
model. Particularly, in step 3, the Gaussian sum appro-
ximation equation is approximated to be a Gaussian pro-
bability densily [unclion in order to avoid exponential in-
crease of Gaussian sum approximaltion. And in this paper,
the transition matrix which varies according to time is
obtaincd by using ohservation errors of the Gaussian sum
approximation as in Equation (11} contrary to the
cxisting MJLS algonithm in which the transition matrix is
given by a statistical method or from prion information.

Pt =all, Wi=12, .m an
If a,,, =1, only the jth Kalman filter operates.
V. Simulation

In mobile communicalion, the channel environment is
largely divided into two:urban area and rural arca. Parti-
cularly in radio communication, the channel coelficient is
given as a4 standard according (o urban or rural area. The
channel coelflicients of the urban and ruwral arcas for
conducting experiments are shown below. They arc in the
form of a Markov chain.

+ Urban:C(8,})=(-0.077 —(.3550.059 1.0 0.059 —0.273)

« Rural: C(#;)=(~—0.05 —0.1 0.2 £.0 0.2 —(.15)

Also, S/N used in the experiments is:
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*
Y ACT Xy

S/NB)=10 logn ~—
L n=CT XY
t=1

Figurc 1 shows results of Kalman fillering with urban
channel coefficient(the circled curve), rural channel coeffic-
ients{the * curve) mismatched Kalman filterindg and con-
ventional MJLS algorithm(the +curve}. Table 1 lists ex-
perimental conditions for Figure 1. Figure 1 shows that
the convenlional MIJLS has superior performance to the
mismatched Kalman filter.

Figure 2 shows the roles of weighling a ), and the trans-
jtion matrix of the inttial distribulion in the condition
given Table 2. MJLS types A and B are for the cases of
different weighted valucs ahy, of the initial distribution,
but their results are almost the same. MJLS types B and
C are for the case in which the transition matrix is differ-
ently designated, and they show that the conventional
MILS performancc depends on the probability correspond-
ing o aclual channcl cocfficient in the transition matrix.

SIN (dB)

Figure 1. Bit Error Ratio for several 1ypes of binary system

Table 1. Simulation Conditions for Fig. ¢

10°

v

Figure 3.
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Proposed MJLS versus other types curve

Table 2. Simulation Conditiens for Fig. 2

Alﬂon!hml’symbol).

Algorithm{svmbol} Conditions.

matched KFio) channe! coefficients = (N 8,)
Xil=(0,0,0,0,0.0), Pon = Oses

hed A { coefficints = ({0;)

-KF(-I Xl = (0,0,0,0,0.0), Pao = Oge

existing channe! coefficients = (8)).((8;)

M1 ali=0.8,a{8=0.2, p,=0.95,pg =0.95.,pp = p, = 0.06
X&8 ={0.0,0.0.0,0). X = (0,0,0,1,0,0), Piy = Pint = Og4f

Figure 3 shows comparison of using adaptive formu-
lation of transilion matrix proposed in this paper to the
Kalman filter in which the transition matrix having co-

incidence probabilily of channel coefficient of 0.99 in the

‘Condition

b Tvue
matched KF(*) channel coefficents = Cl8))

Xoft = (0.0.0.0.0.0). Pan = Og.¢
Finting channal coetfrcients = C(8).CLO)
M1LSior - A o at

oy =0.1,a0m = 0.9, 2y =0.95, Py = (.95 0 = py = 0.05
L Xok = 0.0.0.0.0.00. X33 = (0,0.0.1.0.0). Py = P ~ €4
Existing channel coefficents = 18}, {8y
MJLSix) - B 1 141

aun=0.8.a¢y =0.2, p;=0.95,0p=0.95 pp= oy =105

XU~ (0.0,0,0.0.0), X5 = (0.0.0.1,0.0), Py = P = Ci.q
EXnting channel coefficients = C{8,).C(8.) o
MJLStsb - C "

Xl =10,0.0.0.0.00, Xiff = (0.0.0.1,0.0). Pk = P = Oses

ary =08, a5 = 0.2, P =0.324=03fp"d, =07

Condwien

1
1
i

matchod KETe} channel coefficients = C18,)

Xin = €0.0.0.0.0.00. Pow = Occs
Existing channel coefficents » (X 8,),C(8;)
MLSivh : !

=080 =0.2, by .99, 52 = 0.9 ;= pu =0.01
L X =(0.0.0,0.0.00. X3 = (0.0.0.1.0.00. Aoy = Pt = O
Proposed channel cuefficients = C(8)), ({8,)
Mjl Stol

28 =08.mi =08 o%'=0.2.0%" 0. 2,45 ~ =0 8
e e 12 m
Xob =10.0.0.0.0,0), Xo3' = {0.0,0.1.0.0). Foly = Fiji = O,

R
= dwa
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existing MJLS algorithm is assumed to be an urban chan-
nel coefficient. Its experimental conditions are shown in
Table 3. The results of Figure 3 show that the proposed
MIJLS algorithm has superior performance o the exisling
MIJLS. Also, the proposed MJLS has one type of Kalman
filter from sampling lime k =52, ic., aj), =1. Whereas,
the conventional MJLS system has to usc two Kalman
filters for the continuous observation values. Il mcans
that the proposed MILS has stmpler calculation processes
compared to the existing MJLS.

V. Conclusions

Proposed in this paper is an improved MJLS algorithm
shown in an equalion where change of the channe) cn-
vironment of mobile communication into an urban or ru-
ral channel cocfficicnl according to space of 4 mobile
station js established 1o be a discrete finite rande:n vari-
able in its model, and the transition malrix is changed ac-
cording to sampling time. The MJLS algonthm is an al-
gorithm which can be applicd to a finite number of chan-
ncl environments, and is dependent on the tranmsilion
matrix. Particularly, while the transilion matrix is given
by a slatistical method or from priori information in the
conventional MJLS algorithm, the transition matrix and
other calculation processes are oblatned simply in the
MIJLS algorithm proposed in this paper by using a weig-
hted value ay’ of Gaussian sum approximation which
varies according to sampling time. The simulation resulls
show that the proposed MJLS algorithm is superior. In-
asmuch as the proposed MILS algorithm can be applied
to Markovian model which has discrete finile channel en-
vironment, it can be also extended not only to urbhan or
rural channcl environment discussed in this paper bul
also Lo other channel environments such as tunnel. How-
ever, development of faster algorithms is still needed in
the proposed algorithm as Kalman filtering, which requ-

ires computing power, is used.
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