An Analysis of Tone Durations in Recorded Musical Performances

*Jin Yong Jeon, and **Fergus R Fricke

Abstract

The effect of pitch on tone durations was studied in several pieces of music. In previous work it was found that higher pilched sounds, of a given duration, were perceived to be of longer duration. That work, however, was not undertaken in a musical context. The present work was done to determine whether the previously observed trend was also apparent in musical performances. Several measurements were undertaken One of these involved analysing the recorded performance duralion of notes in several performances of the Mozart Flute Quartet in A-major, K. 298. Performed durations wete also oblatined from a Bach Flute Sonala and a Brahms Clarinet Quintet. An analysis of the musical performances revealed that whike there were individual differences and exceptions in notes, the musicians tended to play higher notes significantly shorlened.

I . Introduction

Whenever skilled musicians play alone or in in ensemble, they play with expression. To be expressive musicians use modilications of timing, dynamic, articulation and other expressive parameters (e.g., subjective duration, rhythm, timbre, roughness, pitch. harmony). Many researchers [1-3] have found that a performer's introduction of expression is not hased on a number of fixed expressed patterns Ibal the performer has learned, but is more closely related to musieal structure. However, some empirical investigations $|4-6|$ of timing in performance, especially with regard to deviations from mechanical regularity in different types of music and with different performers, have shown that it is rarely understood how extreme and varying the deviations of tone durations really are. Other research on music performance involving duralion measurement has revealed the performers' precise internal representation of underlying expressive form [2] and the performers' use of lengthening in the phrasc finals (7).

The performers are aiso lisieners. They continuously check that there is a correspondence between their intentions and the music they produce. Music sounds unacceplable when performed by a digital computer in agreement with what is written in the music score. Deviations from the score constilute an essential part of music communicdion. As Sundberg [8] has argued, these deviations or

[^0]doscrepancies are not tandom and must be meaningful. that is, they must carry information that the listener needs 10 enjoy the performance. What is this information? How is the mucsical code chosen when used by the musician for conveying it? Is this code used in masic only or is part of it borrowed from extramusical communication? Seashore [9| found that tempo rubato depends upon the abitity to hear and to produce fine lemporal shadings in order to produce the desired modutation. It seems a reasonable hypothesis that variations in the tone durations may contribute to the musicality of performances.

This work investigates whether the tone duration depends on the pitch of the tones, i.e., whether there is a link belween the results of the previous research [10-12] and music performances. In their work, the effect of trequency on deration perception was revealed both by comparing the proportion of correct responses and by calculating the duration difference limens of the subjects. For different frequency sound pairs, subjects perceive the ligher frequency sound to be longer in duration. When one tone in a pair has a different frequency from the other (both lones were in the range 0.25 to 4 kHz), it was found that the higher frequency tends to be jutged longer in duration. The effect of frequency difference on duration is likely to be reflected in musicians performances of music. but so far it has been unclear whether the perceptual data apply to musical tone durations. Several experiments were motivated by an interest in the range of applicability of the temporal psychoacoustical data to the complex contexts of mixed sequences in music. The hypothesis in the present study is that higher pitched tones
will be played shorter than lower pitched tones, of the same nominal note value, in musical performances. Although it is not clear that the higher-shorter effect is any way causally related to timing in expressive musical performance, awareness of the effect is important if expression is to be studied without the higher-shorter effect confounding observations.

П. Measurements

The tone durations in some recorded music were measured. Two different pieces of tlute music were first compared in terms of tone durations of performances. Then a further investigation was undertaken to find the effect of frequency on the tone durations in other recordings. The music and performances were chosen because they were familiar and available. The flute and clarinet produce individual waveforms that allow easy determination of the duration of each tone.
For most of the experiments described in this work the performances were stored as sound files on a computer. Any part of the performance could be extracted for detailed listening and analysis of transitions between tones. for spectral analysis, etc. They were analysed using SoundEdil software, which simultaneously displays the variations of total amplitude (intensity) and frequency or lapse of time (duration). Band-pass filtering and calibrations made it possible to get very accurate representations of monophonic performances and in many cases also of polyphonic music. Once the performance was recorded as a sound file, it was subdivided according to the time signature and the length of the file.
The individual tone durations were measured from timeamplitude displays of liltered music. The word "duration" is defined, for the purpose of this paper, as the time interval between onset of one note and the onsel of the next. Thus the total duration of one tone includes the off-time duration, as found in the case of staccato notes. Where any trace of sound discontinuity was not available, either because of weak sounds or sounds with a gradual increase in amplitude, the experimenter's audible amplitude point in the sound envelope was taken as the tone onset. Final notes, notes in an incomplete bar, and notes lollowed by a rest were omitted, since their tone durations could not be measured accurately. Each tone duration was measured with an accuracy of ± 5 msec $\{6 \mid$.
Despite the accuracy of the computerized equipment there are still problems in determining tone durations in certain cases, especially regarding physical and perceptual
tone onsels. The registered acoustical events are often complex. For example, two tones which. by the score, should come sequentially, overlap each other. Because of these factors the determination of tone durations was carried out by a nusician having 15 years of musical experience, who had absofule pitch and oblained tow just noticeable differences (JNDs) in sound duration lests [I\|.

Performers \& Music

The performances of four contemporary flutists, Baron, Blau. Schulz and Beaucoudray, were analysed and compared by measuring tone durations (the flute part oniy). The first three artists' recordings of the Mozart Flute Quartet in A-major, K. 298 and the Beaucoudray's recording of the Hach Flute Sonata in E-minor were analysed (Ser Section 2.3.). Samuel Baron's performance of the Mozart was randomly selected and further analysed as a Ione duration test for the full masic performance. Finally, Jost Michaels' perlormanec of the Brahms Clarinet Quintet in B-minor was inalysed in order to determine whether the results obtained for the flute works were instrument specific.

Measurments of Tone Durations

As shown in Fig. 1, the tone durations can be visually differentiated by the distinctive appearance in the waveform (amplitude variation). The difference in dynamics of music also seems to change wavelorms. In Fig. I(a), Baron's performance of the first repeated part of VAR.I (the Mozart Quartel) was measured (the durations of the first six tones were $575,305,181,408,293,285 \mathrm{msec}$ respectively). The first note (575 msec) was a quarler-note but it was not included in the tone duration analysis as it was in an incomplete bar. The other notes are eighthnotes. As shown in Fig. 1(b), the discontinuity becomes clear when the visual image of the tones is horizontally extended, i.e. 'zoomed in'. The durations of the two tones shown are 508 and 582 msec . As shown in Fig. 1(c), transient or transitional sounds which obscure the onsel of the following note are sometimes found. This is a rate occurrence and has a shorl duration. In the worst casc the duration of the transient part was less than 7 msee 0 that the mean square error of duration assessment is stitl within +5 msec .

Procedure

The notes used for analysis were those that were performed at least twice in a given section of the picces chosen. For the Quartet (first 15 repeated bars of the

Figure 1 . Three visual examples of the tone duration determination:(a) Discontinuitythe onsel points of the lirst. second, ele notes are indicated. (b) Determination of onset of tones using the zoom function. (c) Fxample of the overlapping of tones in the performances.

Andante), the quarter-notes were selected as they are the most common durations. The performance durations of sixteenth-notes were measured in the Bach sonala (first 29 bars in Adagio ma non fanto). The duration-measured notes were [A4, F\#4. G\#4, A4, A\#4, B4, C\#5, [SS. D\#5, E5, $\mathrm{F} 45, \mathrm{G} \# 5$ and A 5 (13 notes) for the Mozart, and E.4. F\#4, G4, A4, A44, B4, C5, CH5, D5, D\#5, E5,F4S, G5. A5 and B5 (IS notes) for the Bach.

Fach measurement of the tone duration was nommalized as a proportion of the performance duration of the bar to which the quarter-note or the sixteenth-note belonged. For a comparison of tone durations in different parts of the music and for using data from different performances, this normalization is required because the tempo and time signature of the music maty vary.

Baron's performance of the Mozart Quartel was further studied by measuring the tone durations throughout the work. The range of measurements was extended to include eighth-notes, quarter-noles and dotted quarter-notes in three different time signatures $(4 / 4,3 / 4$ and $2 / 4$). The performance durations of quarter-notes, dotted quarter-notes and eighth-notes were selected and measured in the 4/4 parts ($T H E M A, V A R, /-N$). Quarter-notes and eighth-
notes were used in the analysis in the $3 / 4$ part (MINUET:$T E$). In the $2 / 4$ part ($R O N D E A U$), eighth-notes were the only notes available in any significant number, and were selected for analysis.

The recording of the Brahms Clarinct Quintet in B-minor was analysed by measuring tone durations (the clarinel part only). The periormance durations of eighthnotes were selected and measured in the $6 / 8$ parts (Part I) of the Quintet, while quarter-notes, doted quarter-notes and eighth-notes were used in the analysis in the $3 / 4$ part ($P_{(I r t} / I$). In the $4 / 4$ part (Part $/ I I$) quarter-notes and eighth-motes were used. The rest of the Quintet (the $2 / 4$ part. Fart $I V$) was nol analysed as the part has a fast tempo (roh moro) and the tone durations of its dominant notes (sixteenth-notes) are too short. Tone durations were averaged al each frequency and plotted as a function of frequency.

III. Resuits

The normalized duration for each note performed was averaged and this was plolted in Fig. 2, as a function of frequency. The relation between the mean performance durations of quarter-notes in the Mozart Flute Quartet and the frequency of the tones is shown in Figs. 2(a)-(c) and had Spearman rank correlation coeflicients $r_{s}=\cdot .55$,
.56 and $.53(p-.06, .05$ and .06 - paired two group lest) for the Baron, Btau and Schulz performances, respectively. In the analysis of the Beaucoudray's performance of the Hach Flute Sonata, as shown in Fig. 2(d), no signilicant dependence of tone durations on frequency was found $[r$. $-\cdot 31, p-.251$. Although the significance level is not very great, Fig. 2 shows broadly that the musicians performed the higher tones with shorter durations.

Mean valucs of performed durations of tones in the Mozart Flute Quartet in A-major, K.298, performed by Baron, are presented as afunction of frequency in Fig. 3. The purpose of this further investigation was to determine whether the average tone durations, other than quarternotes, had the same trend as that shown in Fig. 2. In the $4 / 4$ time signalure, it can be seen that Haron performed the higher pitched tones with shorter duration. It was found that the correlation, r_{5}. between the performed durations of the quarter-noles and the frequency of tones was $\cdot .79$. A value as large as this is significant at the $p<.01$ level. For dolted quarter-notes $r_{s}=.67$ with $p=.08$, and for eighth-notes $r_{s}=.45$ with $p=.14$. In the Mozarl performance analysed, the quarler-note was the prodominant note value. Simitar trends were not found for the other

(d)

Figure 2. Comparison of the normalized tone durations oblained from three performances (Baron (a), Blau (b) and Schulz (c)) of the Mozart Flute Quartel in A-major, K. 298 and Bcaucoudray's (d) recording of the Bach Flute Sonata in E-minor. The mean nomnalized duration/standard deviation of the tones analysed in the four performances are $1.01 / 0.04,1.01 / 0.03,0.99 / 0.05$ and $0.98 / 0.04$, respectively.

(a)

$Y=964.196-.101 * X ; R^{\wedge} 2=.319$
(b)

$Y=325.077-.026 \cdot X: R^{\wedge} 2=.215$
(c)

Figure 3. Mean values of performed durations in sections of the Mozart Flute Quartet in A-major, K. 298 with the $4 / 4$ time signature (Thema, Var. $, I, I, I / I$ and N), as a function of frequency (Hz): Quarter-notes (a), Dolted quarter-notes (b), and Eighth-notes (c). The mean duration (msec)/standard deviation (msec) of the tones analysed for the Quarter-noles, Dolted quarter-notes, and Eighth-notes are 598/69. 898/45, and 303/18, respectively.
time signatures, i.e.. the $3 / 4$ (Menuetto) and $2 / 4$ (Rondeau) sections, where the predominant note values are eighth-notes.

Mean values of tone durations in the Brahms Clarinet Quintel in B-minor are shown as a function of lirequency in Fig. 4. The purpose of this experiment was not only to provide further evidence of dependency of tone durations on pitch but also to check whether the relationship shown in Figs. 2 and 3 is instrument specific. The results can the seen in Fig. 4. The performed durations of the eighthnoles, both in $6 / 8\left|r_{s}=-.70, p<01\right|$ and $4 / 4 \mid r_{s}=.72, p$ <011, show that Michaels performed the higher lones with shorter durations, as found in the performances of the Mozart. In the parts of the perfomance analysed, the eighth-note was the most prevalent thole value. For the quarter-notes in the $4 / 4$ part ($\operatorname{Part} / I I$) the above trend was not found ($r_{s}=-.22$ with $p=-42$). The trend was not found either for other note values or for the $3 / 4$ lime signature.

All time signatures and note values from the performances of the Morart Flute Quartel in A-major, K. 298 and the Brahms Clarinet Quintet in B-minor were included for further analysis. Fach measurement of a given tone was normalized as a proportion of the mean performance duration of all tones, of that note value, in the sectton in which the note was performed, i.e., quarter-notes were normalized by the average length of quarter-notes and eighth-notes by the average length of eighth-notes in a particular movement of the music. Mean values of the normalized tone durations obtained from the two perfor-

Figure 5. Mean values of the normalized ione durations obtained from the performances of the Mozart Flute Quarlet in A-major, K. 298 and the Brahms Clarinet Quintet in B-minor, as a function of frequency (117). Ail time signatures and note values are included in this analysis.

(a)

(b)

(c)

Figure 4. Mean values of performed durations of eighth-notes (a) in Port $/(6 / 8)$, and Quarter-notes (b) and Eighthnotes (c) in Part //I (4/4) of the Brahms Clarinet Quintel in B -minor, as a function of frequency (Hz). The mean duration (msec)/standard deviation (msec) of the tones analysed are 483/33, 242/63, and 358/26 from the top.
mances are shown as a function of frequency in Fig. 5. The variation of performed durations of tones is significant $\left[r_{s}=-.57, p<.01 \mid\right.$. Four time signatures ($2 / 4,3 / 4,4 / 4$ and $6 / 8$) and four note values (eighth-note, sixteenth-note, quarter-note and dotted quarter-note) were included in the overall analysis of variation in the tone durations. In all the parts of the performances analysed the eighth-note and quarter-nole were the most prevalent note values. The notes which appeared in only one section, through the performances, were excluded from the analysis. There were three such notes ($\mathrm{F} ; 3$ 3, $\mathrm{F} \neq 4$ and F ;6).

N. Discussion and Conclusions

The effect of frequency on the tone durations was studied in several pieces of music and it was found that an octave change in pitch could make a difference of up to 20% in the length of the performed tones. It is concluded that the performed length of notes in music not only depends on musical expression (used by the performet) but also depends on the pitch in many instances. In comparing the two different pieces of flute music. a larger variation in perfonnances was found in the Bach than in the Mozart. As shown in Fig. 2, the normalized durations of the sixteenth-notes in the Bach piece were mostity below ' 1 ', whereas, the normatized durations of the quarternotes in the Mozarl piece were evenly spread around ' 1 '. This may be because significant changes in music expression are led by the flute in the Sonata, which could be interpreted as the musician trying to make the music less 'mechanical'. In such sonatas and in the Bach. it is the flutist or the pianist who varies the cxpressive paramelers [3] when they are in the leading part of the sonata- In addition, the expressive variables such as intensity and vibrato are interdependent within the musical structure. There may be variation among different performers' interpretalions of a musical work and intra-individual variations as well. However, from the Mozart results, the trend was the same for the three performers and so it can be concluded that the dependency of duration on frequency is not performer specilic.
The trend of the dependence of tone duration on frequency is not statistically significant in all sections of the music analysed. For the quarter-notes in the $4 / 4$ time signature of the Mozart Flule Quarlet, and the eighth-notes in the $6 / 8$ and $4 / 4$ time signature of the Brahms Clarinet Quintet (where one note value dominales in a section), a clear trend of the effect of frequency on tone durations was found. The performances of the tone dur-
alions are mainly dependent on pitch but in sections of mixed note values, other factors (e.g., dynamics, rhythm, harmony, elc.) may well be more important for the performers' musical expression. A few other notes which appear to be less and to have greater variations in tone durations were checked, but variations from the trend were found.

Even though the dependence of tone durations on frequency was not signilicant in all sections of the music anafysed in this study, three poinds might be drawn from the measurements of the tone durations in the different time signatures and note values as follows:
(i) The effect of frequency on the performance of tone durations is independent of the lime signatures.
(ii) The effect of frequency on the performance of tone durations is independent of the note values but is more signilicant in the eighth-notes and quarter-notes, the dominant note values in most Western music.
(iii) The above trends are mosl significant lor the tone durations in the range 30010700 msec.

No other trend was found which would account for the difference in lone durations. The position of higher notes in the musical phrases was also investigated to determine whether the following or preceding note has an influence on the performed length of a note. It is investigated whether the highest notes (and hence shortest) were in the middle of phrases. The length of noles in the midde of musical phrases, where the pitch goes up and then down, was compared with the case where the pitch goes down and then up. The highest note is $F \not \# 5$ and the lowest note is A4 in both cases. The dverage performance duration of F\#5 was 287 nsec and 295 msec whereas that of A 4 was 304 msec and 320 msec .

Although the principle for lenglhening tone duration in music has been studied [13-17], a psychoacoustic explanation has not been established. It is not clear whether performance rules for melodies, intended to climinale an impression of mechanical performance, are dependent on properties of human perception and cognition. The experiments reported in this paper allempl to account for duration fluctuation at the note level. It has been found that high tones are played shorter and such practice has been justified in terms of previous results which demonstrate that high tones are perceived as longer than lower tones of the same physical duration [1t]. When subjects were asked to produce sounds of equal length, it was also shown that the higher frequencies were played shorter [I2].

In the studies of temporal integration, the effect of fre-
quency has ofter heen constiered Moore \{IXf found some evidetice that the 'interpatmon time or the car is shorter for high fregucncies than lor low. Thes may give the basis for a pryehtaconstical explanation of why higher noter are perecived to be honger. The subjects whe served in the presious auditary experiment $|1| \mid$ coluk hatse taken tue: higher tone lar the longer tome fecanse the higher wome need kes inteqation lume to megrate sound corey fing the purpuse of detection.

The experiment III i, simatar to the different duration/ Frequenc experments (duration discrimination experiments) reported by dian fol in which expermental rexults were
 that perceited duration inereases with an increase in lie quency. Berth tudiey $|I|,|y|$ agree on the mfleme al frequency on time estimation. Albough this agreemeat might be oncompatible with pure lime mockes (cectman.

 experiments might be appled lo the atlentional models (1 Inderwerd amd Swain, I97t: Thomas and Rrown, 1974; Hicks el al. 1977 : 7akaly el al., 1983). An increase in freguency prodnces an merease in the sefechaits of allention, and this leads to the conclusion that greater selectivly of attention prodtaces a langet duration experience than a broater distribution of atention.

Merely observing that performers platy hether motes faster and that listenere hear hipher motes as being relatively longer than lower ones does not explate either phenomenon in isolation. nor does it demonstrate the link hetween these two oherematoms. So fiar it seems that it is the perfectly explained cither from a psychoacomstic. psychological or at musical standipont. However, there are possibilities that periormers could be compensating for their own percepttons, or allempling is 'even ould their performance in suth a way as to compensate for their listeners' perepplual hias. or they might be doing so in response to other motor, cognilive. percepiuat or musical demands/constraints. Abhough the diseussion of such cases reported in this paper remans descriplive. it remains for further stidies lo pro vide additional inempelation of the results in relation tor musical. psychoacoustic or psychological processes.

It is suggested that lurther work needs to be undertaken to verify the present work asing other mosical styles and instruments. and taking into account harmothe structure. This is especially so since a considerathe body of research has demonstrated clear relalionships belween phrase slructure and instantancous tempo leg. Todd. 1989:1992:Repp. 1990). In much lonal music pitio contour
and phtase structure are conlounding vatiables:higher notes appear lowards the centre of phrases. Given the reciblis from previous work (Jeon and Fricke, 1997) it seems likels that hoth phate structure and pitch contribute to bipher tones being perlormed shorter than lower lones.

References

I Shetrenta. I. A. (1983). The commoncation of nasical metre in pland porlormance Quarferty Journat of Exferimonat Par forkegr, A35. 377.396.
\therefore Shatlier. 1. A. (1984). Timme in sold and duet prathe per-
 A. m_{1}, $577-54$;

1 (larke, Li. I' (1988) (ienceatioc principles ill music per-
 Sloboda (Claremden Press. Oxford). I-Z6.
4 Giabrictson. A. (1974). Performatace of rhythm patterns. St andimatom Journat of Pswhology, 15, 63.72.
5. Gitrielsson, A. Bengtssen I., and (Gabrielsson, B. (1983). Performance of musical rhytbon in $3 / 4$ and $6 / 8$ meler, Scondimazan Jinmat of Pswhetoge, 24, 193-21,3.
6. Gabichisom, A. (198\$). Timing in muste performance and its relatoms to nusic experience, in Ciencrative proces in masia, calikel hy J. A. Sloberad (Climendon Press. Oxford). 27.51,
7. Tondt, N. P (toss) A model of expressive toming in tonal music. Afavic perctaion, 3. 3.-59
X. Sumdherg, J. (1988). Computer synthesis of music performance, in ciencrafire process in music, edited by 1. A. Shobeda (Clarendom Press, Oxford), 52-59.
9. Scashore, (. F. (1938). Psyhotogy of music (Meciraw-Fill. New York).
II. Burghard1. II. 16973). Die Sabjektive Datuer schmalbandiger Schalle bei versehmedenen Frequenilagen, drastiod, 2X, 278-284.
If Jeon, J Y., and Fricke, F. R. (1995). The efleed af frequetry on duration fudgements, Acrafico, 81, 1.36-6.14.
12. Fenn, J Y., amd Preke. F. R. (1997). Duration of perceived and performed somuds. Puchology of afingi 2s, To irpear.
13. Thumpsem, W. F., Sundterg, I. Friberg, A., and Fryjen, L. (1989). The use of rules for expression in the performance of melodies. Percholegy of Afusic. 17, 6.3.4.2.
1.4. Sundberg. J., Vriberg, A., and frydén L.. (1989). Rules for automated performane of ensemble music, Contomporary Wfatic Revicw, 3. 89-109.
IS. Sundiorg. J. Friberg, A., and İrydén, L. (1991). Common werets of mosteians and listeners:an amalysis-by-syothesis stuly of musical performance, in Repromening Musioul Strateres, edited by W. P. llowell R., and I. Cross (Aca-A-mic Press, Iondon), 161-107.
if Friherg. A. (1991). Generative rules for music performance: a formal description of a rule syatem, Computer Musir flarmet, 15, 56-71.
17. Friherg. A., Frydén, L.., Bodin, l... and Sundberg. J. (199t). Performance rales for computer-controlled contemporary keyboard music. Comphater Music Johrotal, 15. 49-55.
18. Moore, B. C. J. (1982). An Introduction ow the Pswh hology of Hearng. London : Academic Press
19. Allan, L. G. (I984). Contingent aflereffects in duration judgements. In: J. Gibbon and L. Allan (Eds.). Timing and Time Perseption (pp. 116-1.70). New York: The New York Academy of Sceences.
20. Creciman, C. D. (1962). Human discrminatoon of auditory duration. Iournat of the Acousticat Soricty of Americt, 34. 582-593.
21. Abel, S. M. (1972). Duration discrimnination of noise and tone bursts. Journat of the Achustical Soriaty of therica. 51, 1219-122.3.
22. Divenyi, P. E., and Danner. W. F. (1977). Discrimination of time intervals marked by bricf acoustic pulses of various inlensities and spectral. Perceprion \& Psychophy:icx, 21. 125-142.
23. Allan, L. (i., Kristofferson, A. B.. and Wiens, E. W. (1971). Duration discrimination of brief light thashes. Perreprion \& Psuchophysisc: 9, 327-334.
24. Underwood, G., and Swain, R. A. (1973). Selectivily of attention and the perception of duration. Percoption, 2, 101-105.
25. Thomas, F. A. C., and Brown, I. (1975). Time perception and the filled duration illusion. Perccpuion \& Psychephysics. 16, 449-458.
26. Hicks, R. E., Mifler. G. W., Gacs. (i., and Bicrman. K. (1977). Concurrent processing demands and the experience of lime-in-passing. American Journal of Psychokgo, 90, 431-446.
27. Takay, D., Nitzam, D., and Glicksohn, J. (1983). The influence of task difficulty and external lempo on subjective time estimation. Percoption \& fyrchophysirs. 34, 451-456.
28. Todd, N. P. (1989). A computational model of rubato, ('omemporary Masic Review, 3, 69-88.
29. Todd, N. P. (1992). The dynames of dynamics: A modet of musical expression. Joumaf of the Acoustical Soricty of America, 91, 3540-3550.
30. Repp. B. II. (1990). Pallerns of expressive liming in performances of a lkethoven minuet by nineteen famous pianists, Journal of the , Aroustical Soctety of America, 88. 622-641.

AJin-Yong Jeon

Jin Yong Jeon completed his Iachelor of Archileclural Enginecring (1982) at Hanyang University and Master of Building Science (1991) and PhD in Architecture (1994) at the University of Sydncy. His postdoctoral research at the Universily of Sydney was on people's annoyance and adaptation to traffic noise. He is also interested in developing an evaluation method in the acouslical quality of rooms for music. Currently, he is lechuring at Youngdong Institute of Technology.

AFergus R Fricke

Fergus \mathbf{R} Fricke has graduated in engincering from Melbourne Unirversity, A ustralia, in the mid 60 s and after a Phi) at Monash Universily hedd academic positions at Soulbamplon and Shelfield Universilies in the UK, Purdue University in the USA and Syfney University. He has been inwolved in acousties and acrodynamics research for over 25 years. His initial work was in acrodynamic noise and since then he has undertaken a wide variety of acousties research and is currently mainly involved in room and building acoustics. After spelts as head of the Department of Architectural and Design Science and Acting Dean of Archilecture he is now Director of the Audio Program and the Acoustics Laforatory al Sydncy Unuversity.

[^0]: *Department of Architectural Engineering Youngdong Insti-
 tute of Technology, Chungbuk, Korea.

 * Department of Architectural and Design Science, University of Sydney NSW. Australia.
 Manuscript Received: Seplember 3, 1997.

