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ABSTRACT

The objective of the paper s to compare the computalional complexity of five algorithms for computing lime-domain

second-order Vollerra lilter outputs in terms of number of real multiplication and addition operations required for im-

plementation. This study shows that if the filter memory length is greater than or equal (o 16, the last algorithm using the

overlap-save method and the frequency-domain symmelry properties ol the quadratic coellicients is the most cfficient

among Lhe algorithms investigaled o this paper. When the filter memory length is less than 16, the algorithm using the

lime-¢dlomain symmelry properties is betler than any other adgorithm.

|l . Introduction

Recenl research has demonstrated the importance of
ustng Volterra filters in nonlincar stgnal processing and
nonlincar system modcling. However, since the Volterra
filter is a nonparamctric model [1]. in most cases, the
Volterra hlter is charactecized by a large number of llter
coefficients. lo general, the large number of coclficients
results in Iigh computational complexity, which has
tended Lo prevent the widespread application of Volterra
filters to those practical problems requiring fast compu-
Lation.

Two last algorithms were put forward in |2] and [3] for
reducing lhe computational complexity associated with
the Vollerra filters. it s notable that both algorithms
utilize the FFT afgorithm. However, the algorithin presented
in (2] is based on the onc-and two-dimensional overlap-
save mecthods |4] while the algorithm in |3} atilizes the
one-dimensional FFT-based convolutions when comput-
ing (he quadralic output of a second-order Volierra filter.
In addition, one should consider thal the utilization of
the symmetry properties of the quadratic Vollerra flter
coeflicients may reduce the computational complexily.
Unfortunately, there are no analyses available which indi-
cale how much onc can save wilh tespect lo the

compulational complexily when utilizing the symmelry
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properties. Molivated by these issues, in this paper we
quantify the computational complexity of each of [ive
algorithms in terms of number of real addition and multi-
plication operations. In two ol the five cases we consider
the reduction sn complexity by considering second-
order Volterra coefficient symmetrics in cither the time or
frequency domains. Furthermore, we provide the com-
plexily ratios of the algorithms wilh respect 1o the con-
ventional algorithm.

The remainder of this paper is organized as follows.
The following section describes the algorithms and
quantifics the complexity of each algorithm in terms of
the number of real multiplies and adds. In Scction 111,
cich algorithm is compared in terms of complexity ratio
measured relalive to the conventional algorithm. IS the
filter memory length is grealer than or equal to 16, the
last algorithm wvsing the overlap-save method and the (re-
quency-domain  symmetry properties of the guadratic
coelficients is the most efficient among the algorithms
investigated sn this paper. When the filler memory length
is less than 16, the algorithm using the time-domain sym-
melry praperiics is betler (han any other algorithm.

Finally, the paper is concluded tn Section 1V.
IT. Algorithms and Computational Complexity
If we assume that the nonlinear syslem 1o be represented

by a second-order Volterra filter is stable and has {inite

memory, the Volicrra filter [1] can approximate the output
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of the nonlincar system by its sampled data form.the
output of which can be represented as

N=] N=1N=1

vy =Y h@Dxn-)+Y 3 (7 bxn—xin—Fk)
i=0 1=0 4=0
()

where x(+) denotes the inpul sequence to the filter, ¥(-)
denotes the Vollerra filter outpul, and #,(-) and A (-, -)
represent the linear and quadratic Volterra Milter coeffi-
cients, respectively. & is he filler memory length. Thus,
the number of the linear coefficients is N while that of Lhe
quadratic ones is N2,

In the following, we describe the algorithms considered
in this paper and compute the number of recal addition
and multiplication requircd for implementing each algor-
ithm. Throughout this analysis, we assume that the inpu!
sequence and the lime-domain filter coefficients arc real.
The algorilhms based on he time-domain operations lake
advantage of this assumplion while those based on fre-
gucncy-domain operations can not since Lhey usc complex

arithmetic operations cven lor real ime series data

A. Algorithm 1 : Standard Algorithm

This algorithm directly utilizes (1) to compuie the
time-domatn (ilter outpul ¥(»). As shown in (1}, this
algorithm requires  implementation of one and  fwo-
dimensional convolutions in order to compule the linear
and quadratic components of the filter outpul, respectively.
Noie that this algorithm does nol take advantage of the
symmetry properties of the guadratic filter cocflicients, /2,
(/. k)=h,(k, 7). which will be discussed in the next sec-
tion.

In this casc, to producc onc outpul point in {ime
requires & real muitiplies and N —1 rcal adds in the linear
component;and 2¥? rcal multiplics and N7 —1 real adds
in thc quadratic component. | real add is required for
summation ol cach component outpul which produces a
final filtered outpul poinl. Thus, for one filtered output
poinl, the olaf pumbers of real multiplies and adds are 2
N2 +N and N? +N—1, respeclively. This algorithm will
be used as a base against which to compare the following

four algorithms.

B. Algorithm 2

It is well-known that the guadratic Volterra cocfficients
can be assumed symmetric withoul any loss of generalitly
[£]. That is,

(G, Ry =hyk, ) 2)

When utilizing these symmetry properties in compuling
the time-domain filter output, we should consider lhe
symmetry fuctor £(7, &), which is defined by

t, ify=4

k)= 3)
10. 0 2. ifj#k

because Mo, By xn—xm—k)=h(k, pxn—Ex(n~ )}

Wilh Lhese symmetry propertics, (1) can be rewritlen as

jollows:
N-)
¥ =3 kG xin—i)
r
NN ) (4}
+¥ LA Bxn-Dxin—k
R ]

where 23 (7, kY= 1{7. kY, (), k).

Algorithm 2 wtilizes (4) rather than (1) to compule the
time-domain filter oulpul y(3). When counting the num-
ber of arithmetic operations required for Algorithm 2, the
number of multiplies required for compuling %3 is not
taken into accounl because Lhis cost may or may not be
relevant depending upon whether the filter cocflicients arce
initially given in the Torm of #, or 43.

In (4), the number ol lincar cocfficients is N, while the
numher of guadratic coefficicnts A3{7, &) is N(N 1)/2.
Thus, to produce one output poinl in lime requires N rcal
multiplies and A —1 real adds in the lincar component;
and N(N +1) rcal mulliplies and N(¥ +1)/2—1 real
adds in the guadratic compeneat. In addition, 1 real add
is required for summation of lincar and quadralic
component oulpuls. Thus, for one filtered output point,
the 1otal numbers of reat multiplies and adds arc N* 42
N and 0.5N7 +1.5N - |, respectively.

Algorithms | and 2 utilize the time-domain real arith-
metic operations hased on the time-domain Volterra
filters (1) and {4), cespoctively. However, Algorithms 3 Lo
5. which will be discussed in the following, employ the
discrete Fourier (ransform (DFT) and iaverse DFT
{IDFT} algorithms, wilh the complex arithmelic operatious
in the freguency domain, to compute the fillicred oulpuls.
Actually, these afgorithims uttlize an M-point radix-2 FFT
algorithm rather than the DIT algorithm. It is known
that the M-point radix-2 FET algosithm requires appro-
ximalely 2Mlog. A real multiplies and 3Mlog, M recal adds
(5).

The relationship between complex and rcal arithmetic

operalions is given by

I complex add =2 real adds {5



40

1 complex multiply = 4 real multiplics {6)

2 real adds.

C. Algorithm 3

Algorithm 3 presenled in 2] is a fast algorithm lor
computing the lime-domain output ol a sccond-order
Volierra filter using the corresponding lreguency-domain
Volterra filler and the overlap-save method. The discrele
frequency-domain version |2} ol the time-domain Volterra

filter (1) is given by

Ym)=H (m) X {(m)
N T M [7)

F3Y Ih(p ) X(PX (@S (m—p—)

p=0 4=0
wherc

. I, il mmodulo M) =1
Ou(m) = . (8)
0, il (mmodulo M) 40

In (7). ¥ (m), X(m). H (m), and H;(p. q) are DFT's of
v(z), (), by (n), and A, {7, &), respectively. Note that 34 (-)
ts a module funclion.

In order (o compule the time-domain Nfter oulpul,
Algorithm 3 utilizes the frequency-domain Volterra filler
(7). the overlap-save mcthod {4]. (5] and (he M-poinl
radix-2 FFT algorithm |2]. First, an M-poinl segnenl
consisting of x{-) which overlaps a previous segment by
N points (M > N), is transformed by using the M-point
FFT algorithm. An M-poinl outpul segment of ¥ (m) is
computed by applying the frequency-domain Volterra fil-
ter (7) to the FFTed input segment | X0), .. V(M —1H.
This oulput segment is inverse transformed inle the time
domain. The first N —1 paints in the inverse FFTed oul-
put segment should be discarded because these points are
incorrect due Lo the circular convolution cffecl. The re-
maining correct M —N +1 poinls are appended to those
from the previous oulput segments, which correspond to
the time-domain filler oulput points.

Note that the arithmelic operations involved in Algor-
ithm 3 arc complex operatlions. First, we compule Lhe
computational complexily of Algorithm 3 in terms of the
number of complex operations, and then, use {5} and (6}
to transform the number of complex operations 1o the
number of real operations. Since Algorithm 3 uses the
FFT algorithm and the seclioning technique o implement
a lincar convolution, the computational complexily of the
algorithm depends alse on the complexity of the FET

algorithm. Algorithm 3 requires only (wo one-dimensiongl
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FFT's W (cansform cach input and oulpwt segment ang
one one-and Iwo-dimensional FET's o transform (he lin-
car and guadralic Vollerra filter cocfficients, respectively.
Howgver, we do nolt lake Lhe latler one- and (wo-
dimensionid FF[7s Lo transform the linear and guadratic
Vollerra  Iiler  coeflicients into  consideration  when
counling 1he number of arithmelic operations, since this
cosl may or may not be relevant depending upon whether
the Vollerea filler cocfTicients are imitially given in the (re-
quency domatn or lime domain. To lurther reduce the
complexity, we assume that the length ol cach input seg-
ment, A, {lo be trunsiormed) is & powes of (wo.

IFor one oulpul {requency bin, Algonthm 3 requires |
complex multiply in the fincar component; 2Mf complex
multiplies and M —1 complex adds in the quadralic
componenl:and | complex add for the summation of lin-
car and guadratic outputs. Thus | +2M complex mulliplies
and A complex adds are regquired for one oulput fre-
guency bin. These numbers of  complex  arithmelic
operations are cquivalent to 4(1 +2M) real multiplics and
22 F 200 1 2M) real adds according (o (5) and (6). This
lcads (o u total of 4M{ +2M) +2(2Mlog, M) rceal
multiphics and 2M% 422 (8 +2M) +2(3M log, M) reul
adds per segment, which inclede the complexity of the
M-point radix-2 FFT algorithm mentioned proviounsly.
Nole that an oulpul segment consisting of M points
contwing M — N +1 correet lime-domain output poinls.
For one Dllered outpul point, therelore, the total number
of real multiplics and adds are (46 (1 +2M) +202Mlog, M)
JOM - N H+1) and 1287 F2M (1 +2M) +203M1og. MY/
(M —N +13, respeclively.

D. Algorithm 4

As Algorithm 2 uvlilizes the symmctry properlics in the
time domain, Algorithm 4 introduces the symmetry prop-
crlies of the frequency-domain quadralic Volterra [ilter
coeflicients inle  Algorithm 3. The (requency-domain
quadratic Volterra fikter cociTicienls have the following

symmelry propertics [6];
Ha(p, )= H. g, p) 9

Utilizing these symmetry properties in computing fillercd
outpul points, as in Algorithm 2, we should consider the
frequency-domain symmetry factor f{p. ¢), which is
defined as (3). However, when counting the number of
muitiplies, we do not take the multiplics for the symmelry
fuctors into account for the same reason stated i Algorithm

2. The number of the quadratic terms which contribute lo
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M M .
Y {m) reduces 1o ) +1 or > depending on whether the

oulput frequency bin number m is even or odd, respecti-
M
4

TM' respectively. The reason for tus is that the time-do-

vely. The numbers of even and odd m's are +1 and

main sequence is real.

Fur an even bin m Algorithm 4 requires | complex

M .
multiply in the lincar component: 2(—~ +1) complex multi-

. M . .
phes and Y complex adds in the quadralic component ;

and 1 complex add for the summation of the linear and
yuadratic components. For an odd bin, 1 complkex multiply

M
in the lincar cnmponcnl;Z(T) complex multiplies and

M : .
Y =1 complex adds in the quadratic component ;and 1
complex add for the summation are required. Thys, for

an M-point frequency-domain vulput sequence, the total
- |
numbers of complex mulliplics and adds are B M42M

| 3
43 and ) M’ +T A 41, respectively. Thus, for an M-

poinl lime-domain outpul segment (actuadly, only M ~N
t 1 poinls are vahid), 2M? 4 8M +12 +2(2Mlog, M) real

- 3.,
multiplics and — M* +? M +8 +2(3Mlog,M) rcal adds

are needed. Finally, for one fiftered oulput point in the

te domain, the total number of real mulliplics and adds

arc {2M7 +8M +12 +202M log, M)} /(M =N +1) and
R | | .

‘.2 M?+—— M +3 F20M log:MY/(M =N +1). respe-

ctively.

E. Algorithm 5

The basic idea of Algorithm $ proposed in [3] is to re-
duce the computational complexity of the second-order
Vollerra filter by replacing the two-dimensional convol-
ution of the quadratic Vollerra filler with several
on¢-dimensional operations based on the one-dimensional
FFT and IFFT algorithms. Algorithm 5 decomposes the
L X L. quadratic Volterra filter coefficicnt matrix of (1)
into {. filter coefTicient vectors of size 2L % 1 cach. Tn [3),
it is assumed that the filter memory size is equal 1o the
length of the input sequence. For this rcason, the no-
tatton for the syslem memory length is diffcrent from N
of (1). Generally, it is known thal a convolution of two
sequences of length L generates an output sequence of
(2L —1) points. In (3], however, one zero is appended 10

the oulput sequence so that the length of the sequence

becomes 24.. The filler coelTicient vectors are defined by

Ri=10....0, k(0. ). (1, j+1),...
[« 7 =i {10}
k(L= =1, L-1),0..0f
|[<—L—]|
where j=0,..L~1. The quadratic input vectors are

constructed as follows

x,=1x{®)x(7), x(Dx(j 4 1),...
cn X (L= =1 (L =1),0.....0) (11
l—L + j—>|

Algorithm § applies the 2L-point FFT 1o the vectors 7::
and i", for y=0,..,1.—1. Then, the following rclation is
used lor computing the frequency-domain quadratic out-
pul sequence
L-1

Y {i)= Ho (i) X, (1) +2,£. HADX; @) (12)
where 1=0, |, 2L—t. [n (12}, H;() and X; (5} rep-
resent  the #-th component of the [requency-domain
versions of ;x/ and x,, respectively. The time-domain
quadralic output scquence is oblained by applying the
[FFT to Y,(f) with =0, [,.,2L—1. In this algorithm,
note that he length of the cocfficient vectors h,: depends
on the inpul-cutput sequence not on the syslem memory
size N, For this reason, it 1s difficult to compare Algor-
ithm 5 with the previous algorithms. Thus, in the follow-
ing sechion, we consider we specific cases to facilitate
comparison with the previous algorithms.

On the basis of a careful analysis of the algorithm pro-
vided in [3). we have counted the number of real
multiplics and adds required for implementing Algorithm
S, because the complexity analysis of Algorithm 5 pro-
vided in [3] is not sufficienl for this study. For cach
lime-domain output pont, the tolal number of the real

multiplies is given by

|
4P +3M2Plog, P) 4—-5- LIL +10)+(2L +1) 2Plog, P)

2L :
(13}

while the number of the real adds is

2P 4303 10g, ) +QL +1) 3Plog PY H4L +4L({L—1) +2L
21 '

(14)
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In (13) and (14}, as in (3], we assume that the lime-
domain Vollerra liller memory size is cqual to that of the

input sequence L. £ represents 27

M. Comparison

In Table I, we summarize the numbers of the real
multiplies and adds required for implementing each algor-
ithm. [n Table I, ¥ and M denote lhe fliller memory size
and Lhe section length of the FFT, respectively, while for
Algorithm 5, L represents the length of the filter memory
and the input sequence and £ =2L. Note that Algorithm
5 assumes that the filler memory length should be equal
to the length of the input sequence to the second-order
Volterra filter. Thus, it is diflicult to direclly compare the
compulational complexity ol Algorithm § wilh those of
the remaining algorithms. For this reason, we will com-
pare the complexity of Algorithm 5 in a subscquent sub-
section.

In order to compare lhe compulational complexity of
the algorithms, the computational ratios of the real
multiplics and adds of each algorithm arc computed with
respect Lo Algorithm 1 for various filter memory lengths.

The radios arc delined as lollows:

Number of Multiplics for Algonthm i

RM, = TS - (15]
M Number of Multiplies for Algorithm | )
and
{ s rori i
RA, = Number of Adds for Algorithm i (16)

Number of Adds for Algorithm 1

where £ =1, 2, 3, and 4. RM; and RA,; represent Lhe com-
plexity ratios of real multiplies and adds required for
implementing Algorithm i, respectively. For Algorithms 3

and 4, we have (wo variables lo consider:the Nilier mem-
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Ccmplexty Rauo

3
1 ' b L : L .
ﬁ 2 4 8 16 32 64 128 256

Filter Memory Length N

512 1024

Fig. 1. Complexity ralios of real multiplies for Algorithms | to
4 relalive to Algorithm | assuming M - 2N, Al 1o Ad
represent Algorithms 1 W 4. respectively,

Compeexity Ratio

107l . e C !
2 4 B 16 32 64 128 256 512 1024
Filler Mamory Length N

Fig. 2. Camplexily rations of real adds for Algorithms 1 10 4
relative to Algonithm | assuming A — 2N, Al (o Ad rep-
resent Algorithms ¥ to 4, respeclively.

Table 1. Compulational compiexily measured in terms of the number ol real multplies and adds reguired to compute

one fillered oulput dala point. ¥ and M denote the (ilter memory size and (he section length of the YVF, re-

spectively. For Algodithm 5, L represents Whe lenglh of the filter memoty and (he inpul sequence and £ = 2L,

Algorithms No. of Real Multiplies No. of Real Adds
i INT N NI EN-I
2 NT N OSSN 11LSN -]
3 4AM (1 +2M) +202Mlog , M) IME 20 1 2M) 1 2(3Mog 2 M)
M-N+1 M-N I
4 287 18M 1121 202Mlog 2 M) 1.SM? } 5.5 1% 1 23Mlog. M)
M—N 1L | M-N 1)
5 L+ 1) H2L +4) (2P log, P) ) 2P (21 +4) (3Plogy P) +8L7~21
27, | 2.
1
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ory lenglth N and the FEFT segment length M. For sim-
plicity of comparison, the scgment length M s sel o 2N,
where A is assumed 1o he a power of 2. Figs. | and 2
show the complexity ratios of cach algorithm in terms ol
the number ol real mulliplies and adds, respectively. N
varies [rom 2' to 2' In Figs. | and 2, Al through A4
represent Algonitkms | o 4, respectively.

Since the complexity rabos are computed with respect
1o Algorithm ). the curves ol Algorithm | denoled by Al
in Figs. 1 and 2, arc equal 10 | for cach filter memory
lenpth. We see (hat the complexity rutio curves of Algor-
ithm 2 arc always lower than the curves of Algornhm 1)
and converge to 0.5 as the filter lenglh N increases. This
inplies that the complexity of Algorithm 2 is appro-
ximalely hadl ol the complexily of Algonthm 1§ for a
sulficiently large N. This complexily reduction is obtained
by ulilizing the symmetry properlics of the time-domain
quadratic Vollerra filter coelfhcients in computing the
Yolterra filler oulputs,

The complexily ratio for Algorithms 3 decreases expo-
nenlially lor the various filler memory lengths, Note that
Figs. | and 2 are plotied in log scale. For the filler mem-
ory lengths N = 16, the complexity ratios of mulliplies for
Algonthm 3 are less than |, while those of adds lor Al-
gorithm 3 hecome less than | when N = 32, This indicates
that Algorithim 3 becomes Supcrior to
Algorithm | in teems of the number of rcal multiplies and
adds for N = 32, This cfficacy is obtained hecause of the
use of the discrete frequency-doman Volterra filter and
the 1-I> FFT algorithm, as opposed 1o performing 1-D
and 2-D convolutions in the discrete lime domain.

The complexily ol Algorithm 4 decreases more rapidly
than thal of Algorithm 3} as N increases. This is duce to
the use of the frequency-domain symmelry properties in
addition to wse of the discrele frequency-domain Volterra
filter and the 1-D FFT algorithm in Algorithm 3. In
terms of the aumber of real multiples, Algorithm 4
becomes superior (o0 Algorithm 1 for the filter memory
lengths N = 8. while for & = 16, Algorithm 4 is best in
terms of the number of read adds. Furthermore, the com-
plexily of Algorithm 4 is always lower than that of Algor-
ithm 3 and becomes equal to aboul one quarter of thal of
Algorithm 3 (or sulficiently large V.

Generally speaking, Algorithm 4 performs betier than
any of the other lour algorithms for the filler memory
lengths N = 16, In (he remaining cases, thal is, N=2, 4,

or 8, Algorithm 2 is recommended.

Algorithm 5

In this subscction, we comparc the computational com-
plexaly of Algorithm 5 to those of Algorithms | and 4. As
menlioned previously, Algorithm § is developed based on
the assumplion Lthatl the fifter memory leogth is equal to
the inpul sequence length, ard, thus that the length of the
outpul sequcnce 1s Iwice lhe inpul sequence length.
Because of this assumption, we cannot employ the rela-
tively simple companson framcwork ulilized previously.
Thus, the complexity of Algorithm 5 is considered for
(wo cases when M=L and when N < L. In both cascs,
we measure the complexily ratios of Algorithm 5 with re-
spect to Algorithm 1 in terms of the numbers of real
multiplies and adds.

The first casec we consider is when the length of the
input sequence L is equal to the filter memory length N,
that is. when (he assumption for Algorithm 5 is satisfied.
In this case, lhe complexily ralios of multiplies and adds

are given by

4 4+025(N +1) +22N +4)log, (2N)

7
RM; ShE L an
and

1 +302N +4)lom (2N) +4N
RA, = 13N ta)iog (2N) . 18)

NP HN-1

In Figs. 3 and 4, the complexity ratios, RM; and RA.,
denoted by AS are plotted for ¥=2, 4, 8,...1024. For
the purpose of comparison, RM, and RA, of Algorithm
4 are also plotted in Figs. 3 and4. We see that for each fil-
ler memory length, the curves for Algorithm 5 are higher

1
10 T v y T T T T T

2
@
4
2 A5
3 1071
£
3 A4
Q
102
10° s L L L ‘ L s L
2 4 8 16 32 64 128 256 512 1024

Filter Memory Length N

Fig. 3. Complexity ratios of rcal malliplies for Algorithms 1, 4,
and 5 relative o Algorithm 1 assuming that the [ilter
length is equat to the input sequence length and that
M =2N. Al Ad, and A5 represent Algorithms 1, 4, and
S, respectively.
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100 . . . . . .

;

A1l

A5 i

Complexity Ratio

-
o,
"

A4

-
=3
[

]
1
1
1

4 8 16 32 64 120 256 512 1024
Filier Memory Length N

Fig. 4. Complexity ratios of real adds for Algorithms 1, 4, and
S refative 1o Algorithm | assuming that the filler length
is cquul to the mpul sequence lenglh and thal M =28
Al. A4, und AS represenl Algorithms §. 4 and 5, re-
speclively.

than those of Algonthm 4. Thus, cven lor ¥ = L, Algorithm
4 is morc clficienl than Algorithm 5. [l is ¥ > 64 when
Algorithm 5 becomes superior 1o the standard algorithm,
Algorithm [, while Algorithm 4 does when N > 16.

Next, we consider the case (hat the filter memory
length A is less than the input sequence length /.. Thus,
the actual output scquence lenpth is £ 1 ¥ —1. In order
to apply Algorithm 5 10 this situation, the memory length
of the Vollerra filter is supposed to be L by appending
2cros (0 Lhe non-zero actual Volterra filler coefficients.
For 1his reason. the numbers of real mulliplies and adds
are same to those for the oulput sequence of 27, samples.
As mentioned  previously, however, the lenglh of the
actual output sequence is L +N -1, Thus, the numbers
of rcal mulliplies and adds given in Table | 18 incrcased
by a lactor of 2L/(1. +N—1). For simplicity ol compari-
son, we assume  that there is a positive number ff
sabisfying £ = fN. Then, the numbers of real mulliplies

and adds required for computing one oulpul point arc

given by
p SN HOSN(BN +H1) HAN (2N +A)log, (2fiN) 19)
(DN HL
AN LON(Q2AN 14}log, (28N) +8,'3Nf_ 20
(ff +1N~1

respectively. From (19) and (20), we sec that the numbers
of real multiphes and adds are dependent upon fi. This
implics that the complexity of Algorithm 5 varies accord-
ing Lo the relative lenglh between lhe filter memory

length and input sequence kength under the assumplion N
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< L. This does not give a clear comparison. Thus, lor f#
=10, 1000 and 100000, we calculate the complexity ratios
ol Algorithm 5 relalive to Algorithm | by increasing the
filler memory lenglth N (rom 2' 1o 2" The results are
plotted n Figs. S and 6. Fig. 5 is for the number ol real
multiplics while Fig. 6 is for the number of real adds. The
curves denoted by A4 in Figs. § and 6 are for the com-
plexity ralios of Algorithm 4 under the same condition.
In Figs. 5 and 6, we observe that the complexity ratios of
Algorithm 5 increase as f increases while that of Algor-
ithm 4 is independent of f, that is, the npul sequence
length. Furthermore, for any value of f. the corres-
ponding curve of Algorithm § is higher than that of
Algorithm 4, which indicates that Algorithm 4 is more
elficient than Algorithm 5.

10 . ; . . . ‘ .

-
%

B=100000

3

a
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Fig. 5. Complexily ratios of real multiphes for Algonthms |. 4,
and 5 relalive to Algotithm | assuming that £ =gN,
where fi= 10, 1000, and 100000. Al and A4 represent
Algorithms | and 4, respectively.
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I and 4. respectively.
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Generally speaking, if the assumption, that the length
of the filter memory is equal 1o that of the input se-
quence, required for Algorithm 5 is satisfied, Algorithm $
15 more clficient than the standard algorithm, Algorithm
1 for the filter memory lkenglhs greater than 64. Other-
wise, the complexity of Algorithm 5 is dependent also on
the ralio of the input sequence length to the [fter mem-
ory length, For an imput scquence rclatively longer than
the filter memory length, for example, = 1000 and N =
256, the complexity of Algorithm 5 is much higher than
thal of Algorithm 1. [t is notable that the complexity of
Algorithm 4 is lower than that of Algorithm 5 for any

casc.

[V. Conclusion

In this paper, we compare five second-order Volterra
filtering algorithms in lerms of compulational complexity.
The algorithms considered in the paper are as follows;

Algorithm |:Time-domain onc and two-dimensional
convolution approach bascd on (1),

Algorithm 2:Time-domain one and two-dimensional
convolution approach where the symmetey
properties of the quadratic Volterra filter
cocfficients 1] are vtilized when compul-
ing the quadratic component of the Vollerra
filter output.

Algorithm 3 :Frequency-domain fast approach presented
in [2].

Algorithm 4:Frequency-domain fast approach of {2]
but in which the symmctry properties of
frcquency-domain quadratic Volterra fil-
ter cocfficients {6) are utilized.

Algorithm 5:Fast algorithm proposed in [3].

The computation complexity of each algorithm is
measured using the numbers of real multiplics and adds
required for implementation. The numbers of real
multiplies and adds for cach algorithm are summanzed in
Table 1. In order to demonstrale the relative efficacy of
each algorithm, the complexity ratios defined by (15) and
(16) arc computed and plotted for the various filter mem-
ory lenglhs. For this, it is assumed that the segment
length M is equal to 2N for Algorithms 3 and 4. For
Algonithm 5, we consider the two cases; L=N and L=§
N with =10, 100, and 100000. Within this comparison
framcwork, we can make several observations, as follows:

« Algorithm 2 is less complex than Algorithm 1 for

any filtcr length. Furthermore, for large filter

lengths, the complexity of Algorithm 2 is half of that

of Algorithm |.

+ When the Volterra filter memory leogths are greater
than or cqual to 32, Algorithm 3 becomes superior
to Algorithm 1.

+ When the filter memory lengths are greater than or
equal to 16, Algerithm ¢4 performs better than Algos-
ithm 1. The complexily of Algorithm 4 is about one
quarster ol that ol Algorithm 3 for sufficiently large
flter lengths (V = 128).

- When the assumption for Algorithm 5 is satisfied, it
becomes better than Algorithm 1 for the filter mem-
ory lengths greater than or equal to 64, while it is
less eflicient than Algorithm 4 for any filter memory
length. When the filter memory length is shorler than
an inpul sequence, the complexity of Algorithm S
shows dependency on the relative lengths between
the filter memory and the inpul sequence. Even in
this casce. Algorithm 4 cxhibits less complexity than
Algorithm 5.

+ According 1o the results for Algorithms 2 and 4, the
utilizabon of the symmelry properties of the quad-
ralic Volterra filter coefficients in the lime-domain
algorithm  and the f{requency-domain algorithm
reduces the compulational complexity.

Clearly, Algorithm 4 is the most efficient one among

the algorithms investigated in this paper in terms of the
number of real multiplies and adds for N = 16,
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