Computational Complexity Comparison of Second-Order Volterra Filtering Algorithms

Sungbin Im*
※This work is supported by the Gyonae Research 96 of Soongsil University.

ABSTRAC!

The objective of the paper is to compare the computational complexity of five algorithms for computing time-domain second-order Voltera lilter outputs in terms of number of real multiplication and addition operations required for implementation. This study shows that if the filter memory length is greater than or equal to 16 , the fast algorithm using the overlap-save method and the frequency-domain symmetry properties of the quadratic coellicients is the most efficient among the algorithms investigated in this paper. When the lilter memory length is less than \mathbf{I}. the algorithm using the lime-domain symmetry properties is better than any wher adgorithm.

I . Introduction

Recent research has demonstrated the imporiance of using Volterra filters in monlincar signal processing and nonlinear system modeling. However, since the Volterta filter is a nomparametric model [1]. in most cases, the Volterris filter is characterized by a large number of lilter coefficients. In general, the large number of eoefficients results in high computational complexity, which has tended to prevent the widespread application of Volterra filters to those practical problems requiring fast computation.

Two last algorithms were put forward in 12] and [3] for reducing the computational complexity associated with the Volterra filters. It is notable that both algorithms utilize the FFT algorithm. However, the algorithm presented in [2] is based on the one-and two-dimensional overlatosave methods $|4|$ while the algorithm in $|3|\}$ atilizes the one-dimensional FFT-based convolutions when computing the quadratic output of a second-order Volterra filter. In addition, one should consider that the utilization of the symmetry properties of the quadratic Volterra filter coefficients may reduce the computational complexity. Unfortunately, there are no analyses available which indicate how much one can save with respect to the computational complexity when utilizing the symmelry

[^0]properties. Motivated by these issues, in this paper we quantify the computational complexity of each of five algorithms in terms of number of real addition and multiplication operations. In two of the five cases we consider the reduction in complexity by considering secondorder Volterra coefficient symmetries in either the time or frequency domains. Furthermore, we provide the complexity ratios of the algorithms with respect 10 the conventional algorithm.

The remainder of this paper is organized as follows. The following section describes the algorithms and quantifies the complexity of each algorithm in terms of the number of real multiplies and adds. In Section III, each algorithm is compared in terms of complexity ratio measured relative to the conventional algorithm. If the filter memory length is greater than or equal to 16 . the fast algorithm using the overlap-save method and the lre-quency-domair symnetry properlies of the quadratic coefficients is the most efficient among the algorithms investigated in this paper. When the filter memory length is less than 16, the algorithm using the time-domain symmetry properties is better than any other algorithm. Finally, the paper is concluded in Section IV.

П. Algorithms and Computational Complexity

If we assume that the nonlinear system to be represented by a second-order Volterra filter is stable and has dinite memory, the Volterra filter [1] can approximate the output
of the nonlinear system by its sampled data form; the output of which can be represented as
$y(n)=\sum_{i=0}^{N-1} h_{1}(i) x(n-i)+\sum_{i=0}^{N-1} \sum_{k=0}^{N-1} h_{2}(j, k) x(n-j) x(n-k)$
where $x(\cdot)$ denotes the inpul sequence to the filter, $y(\cdot)$ denotes the Volterra filter outpul, and $h_{1}(\cdot)$ and $h_{2}(\cdot, \cdot)$ represent the linear and quadratic Volterra filter coefficients, respectively. N is the fifter memory length. Thus, the number of the linear coefficients is N white that of the quadratic ones is N^{2}.

In the following, we describe the algorithms considered in this paper and compute the number of real addition and multiplication required for implementing each algorithm. Throughout this analysis, we assume that the input sequence and the lime-domain filter coefficients are reat. The algorithms based on the time-domain operations lake advantage of this assumption while those based on fre-quency-domain operations can not since they use complex arithmetic operations even for real time series data

A. Algorithm 1 : Standard Algorithm

This algorithm directly utilizes (1) to compute the time-domain filter outpul $y(n)$. As shown in (1), this algorithm requires implementation of one and twodimensional convolutions in ordet to compute the linear and quadratic components of the filter output, respectively. Note that this algorithm docs not take advantage of the symmetry properties of the quadratic filter coeflicients, h_{2} ($j . k$) $=h_{7}(k, j)$, which will te discussed in the noxi section.

In this case, to produce one outpul point in time requires N real multiplies and $N-1$ real adds in the linear component; and $2 N^{2}$ real multiplies and $N^{2}-1$ real adds in the quadratic component. I real add is required for summation of each component outpul which produces a final filtered outpul point. Thus, for one filtered output point, the tolal numbers of real multiplies and adds are 2 $N^{2}+N$ and $N^{2}+N-1$, respectively. This algorithm will be used as a base against which to compare the following four algorithms.

B. Algorithm 2

It is well-known that the quadratic Volterra cocfficients can be assumed symmetric without any loss of generality [t]. That is,
$h_{2}(j, k)=h_{2}(k, j)$

When utilizing these symmetry properties in computing the time-domain filter output, we should consider the symmetry factor $/(j, k)$, which is defined by
$I(j, k)= \begin{cases}1, & \text { if } j=k \\ 2, & \text { if } j \neq k\end{cases}$
because $h_{2}(j . k) x(n-j) x(n-k)=h_{2}(k, j) x(n-k) x(n-j)$. With these symmetry propertics, (1) can be rewritten as follows:

$$
\begin{aligned}
& y(n)=\sum_{i=1}^{N-1} h_{1}(i) x(n-i) \\
& +\sum_{j}^{N} \sum_{k}^{1} h_{2}^{\prime}(j, k) x(n-j) x(n-k) \\
& \text { where } h_{2}^{3}(j, k)=/(j, k) h_{2}(j, k) \text {. }
\end{aligned}
$$

Algorithm 2 utilizes (4) rather than (1) to compute the time-domain filter oulput $y(n)$. When counting the number of arithmetic operations required for Algorithm 2, the number of multiplies required for computing h_{z}^{\top} is not taken into account because this cost may or may not be relevant depending upon whether the filter coeflicients are initially given in the form of h_{2} or h_{2}.

In (4), the number of linear coefficients is N, while the number of quadratic coefficients $\left.h_{2}^{6} 1 j, k\right)$ is $N(N+1) / 2$. Thus. to produce one output point in time requires N real multiplies and $N-1$ real adds in the linear component; and $N(N+1)$ real mulliplics and $N(N+1) / 2-1$ real adds in the quadratic component. In addition, 1 real add is required for summation of linear and quadratic component outputs. Thus, for one filtered output point, the tolal numbers of reat multiplies and adds are $N^{2}+2$ N and $0.5 N^{2}+1.5 N-1$, respectively.

Algorithms I and 2 utilize the time-domain real arithmetic operations hased on the time-domain Volterra filters (1) and (4), respoctively. However, Algorithms 3 to 5 , which will be discussed in the following, employ the discrete Fourier Iransform (DFT) and inverse DF'T (IDFT) algorithms, with the complex arithmetic operations in the frequency domain, to compute the fillered oulpuls. Actually, these afgorithons utilize an M-point radix-2 FFT algorithm rather than the IDFT algorithm. 11 is known that the M-point radix- 2 FFT algorithm requires approximately $2 M \log _{2} M$ real multiplies and $3 M \log _{2} M$ real adds [5].

The relationship between complex and real arithmetic operations is given by

$$
\begin{align*}
1 \text { complex multiply } & =4 \text { real malliplics } \tag{6}\\
& +2 \text { real adds. }
\end{align*}
$$

C. Algorithm 3

Algorithm 3 presented in $|2|$ is a fast algorithm for computing the lime-domain output of a second-order Volterra filter using the corresponding frequency-domain Volterra filter and the overlap-save method. The discrete frequency-domain version $|2|$ of the time-domain Vollerr: filler (I) is given by

$Y(m)=I_{1}(m) X(m)$

$$
\begin{equation*}
+\sum_{p=0}^{N} \sum_{q=0}^{1} H_{2}(p, q) X(p) X(q) \delta_{M}(m-p-q) \tag{7}
\end{equation*}
$$

where
$\delta_{M}(m)= \begin{cases}I, & \text { il }(m \text { modulo } M)=0 \\ 0, & \text { il }(m \text { modulo } M) \neq 0\end{cases}$

In (7), $Y(m), X(m), H_{1}(m)$, atd $H_{7}(p, q)$ are DFT's of $y(n), x(n), h_{1}(n)$, and $h_{7}(j, k)$, respoctively. Note that $\delta_{M}(\cdot)$ is a modulo function.

In order to compute the time-domains lifter output. Atgorithm 3 utilizes the frequency-domain Volterria filter (7), the overlap-save method 14|. |5]. and the M-point radix-2 FFT algorithm |2|. First, an M-point segment consisting of $x(\cdot)$ which overlaps a previous segment by N points $(\mathbf{M}>\mathrm{N})$, is transformed by using the M -point FFT algorithm. An M-point output segmenf of $\gamma(m)$ is computed by applying the frequency-domain Vollerra filter (7) to the FFTed imput segment $\left.\mid X^{\prime} 10\right), \ldots . . I(M-1| |$. This output segment is inverse transformed into the time domain. The first $N-I$ points in the inverse FFTed output segment should be discarded becatuse these points are incorrect due to the circular convolution effeet. The remaining correct $M-N+I$ points are appended to those from the previous output segments, which correspond to the time-domain filler output points.

Note that the arithmetic operations involved in Algorithm 3 are complex operations. First, we compute the computational complexity of Algorithm 3 in terms of the number of complex operations, and then. use (5) and (6) to transform the number of complex operations to the number of real operations. Since Algorithm 3 uses the FFT algorithm and the sectioning technique to implement a lincar convolution, the computational complexity of the afgorithm depends also on the complexity of the FFY algorithm. Algorithm 3 requires only two one-dimensional

FFT's to transform each input and output segment and one one-and Iwo-dimensional FFT's lo tratniorm the lincar and quadratic Volterra filter coefficients, respectively. However. we do not lake the latter one- and twodimensionat FF"'s to transform the linear and quadratic Vollerra litter coeflicients into consideration when counling the number of arithmetic operations, since this cost may or may nol be relevant depending upon whether the Vollerra filter coefficients are initially given in the frequency domatin or lime domain. To lurther reduce the complexity. we assume that the length of each input segment, M, (to be trimstomed) is a power of two.

For one oulput lirequency bin, Algorithm 3 requires I complex multiply in the linear component; 2 M complex maltiplies and $M-I$ complex adds in the quadratic component:and I complex add for the summation of linear and quadratic outputs. Thus I $+2 M$ complex mulliplies and M complex adds are required for one output irequency bin. These numbers of complex arithmetic operations are cquivalent to $4(1+2 M)$ real matliplies and $2 M+2(1 \quad 12 M$) real adds according to (5) and (6). This leads to a total of $4 M(1+2 M)+2\left(2 M \log _{2} M\right)$ real multiplics and $2 M^{2}+2 M(t+2 M)+2\left(3 M \log _{2} M\right)$ real adds per segment, which include the complexity of the M-point radix-2 FFT algorithm mentioned previously. Note that an output segment consisting of M points contains $M-N+1$ correct lime-domain output points. For one filtered output point, therefore, the total number of real multiplies and adds are $\left\{4 M(I+2 M)+2\left(2 M \log _{2} M\right)\right.$) $/(M \cdot N+1)$ and $\{2 M\rangle+2 M(1+2 M)+2\left(3 M / \log _{2} M\right) / /$ $(M-N+1)$, respectively.

D. Algorithm 4

As Algorithm 2 utilizes the symmetry properties in the lime domain. Algorithm 4 introtuces the symmetry properties of the frequency-domain quadratic Voltera lilter coeflicients into Algorithm 3. The frequency-domain quadratic Volterra fitter cocllicients have the following symmetry propertics $|6|$;
$H_{7}(p, q)=H_{3}(q, p)$

Utilizing these symmetry properties in computing filtered outpul points, as in Agorithm 2, we should consider the frequency-domain symmetry factor $I(p, q)$, which is defined as (3). However, when counting the number of multiplies, we do not take the multiplies for the symmetry factors into account for the same reason stated in Algorithm 2. The number of the quadratic terms which contribute in
$Y(m)$ reduces to $\frac{M}{2}+1$ or $\frac{M}{2}$ depending on whether the oulput frequency bin number m is even or odd, respectively. The numbers of even and odd m 's are $\frac{M}{4}+I$ and $\frac{M}{4}$, respectively. The reason for this is that the time-domain sequence is real.

For an even bin m. Algorithm 4 requires 1 complex multiply in the linear component $: 2\left(\frac{M}{2}+1\right)$ complex multiplies and $\frac{M}{2}$ complex adds in the quadratic component ; and 1 complex add for the summation of the linear and quadratic components. For an odd bin, 1 complex multiply in the linear component; $2\left(\frac{M}{2}\right)$ complex multiplies and $\frac{M}{2}-1$ complex adds in the quadratic component ;and 1 complex add for the summation are required. Thus, for an M-point frequency-domain output sequence, the total numbers of complex mulliplies and adds are $\frac{1}{2} M^{2}+2 M$ 13 and $\frac{1}{4} M^{3}+\frac{3}{4} M+I$, respectively. Thus. for an M point time-domain output segment (actually, only $M-N$ i 1 poinls are valid), $2 M^{2}+8 M+12+2\left(2 M \log _{2} M\right)$ real multiplies and $\frac{3}{2} M^{2}+\frac{11}{2} M+8+2\left(3 M \log _{2} M\right)$ real adds are needed. Finally, for one liflered output point in the time domain, the total number of real multiplies and adds arc $\left\{2 M^{2}+8 M+12+2\left(2 M \log _{2} M\right)\right\} /(M-N+1)$ and $\hat{2}_{2}^{3} M^{?}+\frac{11}{2} M+8+2\left(3 M \log _{2} M\right): /(M-N+1)$. respectively.

E. Algorithm 5

The basic idea of Algorithm 5 proposed in [3] is to reduce the computational complexity of the second-order Volterra filter by replacing the two-dimensional convotution of the quadratic Vollerra filter with several one-dimensional operations based on the one-dimensional FFT and IFFT algoritims. Algorithm 5 decompeses the $L \times L$ quadratic Volterra filter coefficient matrix of (I) into L. filter coefficient vectors of size $2 L \times 1$ cach. In [3]. it is assumed that the filter memory size is equal to the length of the input sequence. For this reason, the notation for the syslem memory length is different from N of (1). Generally, it is known that a convolution of two sequences of length L generates an output sequence of $(2 L-1)$ points. In [3], however, one zero is appended to the output sequence so that the length of the scquence
becomes 22 . The filter coeffecient vectors are defined by

$$
\begin{align*}
h_{j}= & \mid 0 \ldots, 0, h(0 . j), h(1, j+1), \ldots \\
& |\cdot j \rightarrow| \tag{10}\\
& \ldots, h(L-j-1, L-1), 0, \ldots,\left.0\right|^{T} \\
& |\leftarrow L \rightarrow|
\end{align*}
$$

where $j=0, \ldots, L-1$. The quadratic input vectors are consiructed as follows:

$$
\begin{align*}
& x_{1}=\mid x(0) x(j), x(1) x(j+1), \ldots \\
& \quad \ldots, x(L-j-1) x(L-1), 0 \ldots \ldots 0]^{T} \tag{11}\\
& \quad|\&-L+j \rightarrow|
\end{align*}
$$

Algorithm 5 applies the 2L-point FFT to the vectors $\overline{h_{j}}$ and \bar{x}, for $j=0, \ldots, L-1$. Then, the following relation is used for computing the frequency-domain quadratic ontpul sequence:
$Y_{2}(i)=H_{0}(i) X_{0}(i)+2 \sum_{j=1}^{L-1} H_{j}(i) X_{j}(i)$
where $i=0,1, \ldots, 2 L-1$. In (12), $H_{j}(i)$ and $X_{j}(i)$ represent the i-th component of the frequency-domain versions of $\overline{h_{j}}$, and $\overline{x_{i}}$, respectively. The time-domain quadratic output sequence is oblained by applying the IFFT $10 \gamma_{2}(i)$ with $i=0,1, \ldots, 2 L-I$. In this algorithm, note that the length of the coefficient vectors $h_{;}$depends on the input-output sequence not on the system memory size N. For this reason, it is difficult to compare Atgorithm 5 with the previous algorithms. Thus, in the following section, we consider two specific cases to facilitate comparison with the previous algorithms.

On the basis of a careful analysis of the algorithm provided in [3], we have counted the number of real multiplies and adds required for implementing Algorithm 5 , because the complexity analysis of Algorithm 5 provided in [3] is not sufficient for this study. For each time-domain output point, the tolal number of the real multiplies is given by

$$
\begin{equation*}
\frac{4 P+3\left(2 P \log _{2} P\right)+\frac{1}{2} L(L+1)+(2 L+1)\left(2 P \log _{2} P\right)}{2 L} \tag{13}
\end{equation*}
$$

while the number of the real adds is
$\frac{2 P+3\left(3 P \log _{2} \rho\right)+(2 L+1)\left(3 P \log _{2} P\right)+4 L^{2}+4 L(L-1)+2 L}{2 I .}$.

In (13) and (14), as in [3], we assume that the timedomain Volterra litter memory size is equal to that of the input sequence L. P represents $2 L$.

III. Comparison

In Table I, we summarize the numbers of the real muttiplies and adds required for implementing each algorithm. In Table I, N and M denote the filler memory size and the section length of the FFT, respectively, while for Algorithm 5, L represents the length of the filter memory and the input sequence and $\boldsymbol{P}=2 L$. Note that Algorition 5 assumes that the filter memory length should be equal to the length of the input sequence to the second-order Volterra filter. Thus, it is diflicult to directly compare the computational complexity of Algorithen 5 with those of the remaining algorithms. For this reason, we will compare the complexity of Algorithm 5 in a subsequent subsection.

In order to compare the computational complexity of the algorithms, the compulational ratios of the real multiplies and adds of each algorithm are computed with respect to Algorithm 1 for various filter memory lenglts. The ratios are delined as follows:

RM, $_{1}=\frac{\text { Number of Multiplics for Algorithm i }}{\text { Number of Multiplics for Algorithm I }}$
and
$\mathrm{RA} A_{i}=\frac{\text { Number of Adds for Algorithm i }}{\text { Number of Adds for Algorithm }-}$
where $i-1,2,3$, and 4. RM_{i} and RA_{i} represent the complexity ratios of real multiplies and adds required for implementing Algorithm i , respectively. For Algorithms 3 and 4 , we have two variables to consider: the liller mem-

Fig. 1. Complexity ratios of real multiplies for Algorithms I to 4 relative to Algorithm 1 assuming $M-2 N$. At to A4 represen! Algorithms 1 tor 4, respectively.

Fig. 2. Complexity rations of real adds for Atgorithms 1 to 4 rilative to Algorithtn I atssuming $M-2 N$. Al to A4 represent Aggorithms : to 4, respectively.

Table 1. Compulational complexily measured in terms of the number of real multiplies and adds required to compute one filtered output data point. N and M denote the lilter memory size and the section length of the fry, wespectively. For Algorithm S. L represents the length of the filter mensory and the inpul sequence athd $P-2 L$.

ory length N and the FFT segment length M. For simplicity of comparison, the segment length M is sel to $2 N$. where N is assumed to be a power of 2 . Figs. 1 and 2 show the complexity ratios of each algorithm in terms of the number of real malliplies and adds, respectively. N varies from 2^{\prime} to 2^{10}. In Figs. I and 2 . Al through A4 represent Algoriltens I to 4 , respectively.

Since the complexity ratios are computed with respect 1o Algorithm I. The curves of Algorithm I denoted by AI in Figs. 1 and 2, are equal 10 I for cach filter memory length. We see that the complexity ratio curves of Algorthm 2 are always lower than the cerves of Agorititm 1 and converge to 0.5 as the filter lenglh N increases. This implies that the complexity of Algorithm 2 is approximately hatli of the complexity of Algorithm 1 for a sulficiently large N. This complexity reduction is ohtained by atilizing the symmetry properties of the time-domain ytadratic Volierra filter coclicients in computing the Volterra lilter oulputs.

The complexily ratio for Algorithms 3 decreases expofentially for the various filter memory lengths. Note that Figs. I and 2 are plotied in log scale. For the filler memory lengits $N>16$, the complexity ratios of multiplies for Agorithm 3 are less than I, while those of adds for AJgorithm 3 hecome less than I when $N \geq 32$. This indicates that Algorithm 3 becomes supcrior to Algorithm 1 in terms of the number of real multiplies and adds for $N \geq 32$. This efficacy is obtained hecause of the use of the discrete frequency-domain Voltersa filter and the I-D FFT algorithm, as opposed to performing $\mathbf{1 - D}$ and 2-D convolutions in the discrete time domain.

The complexity of Algorithm 4 decreases more rapidly than that of Algorithm 3 ats N increases. This is due to the use of the frequency-domain symmetry properties in addilion to use of the discrete frequency-domain Volterra fiter and the 1-D FFT algorithm in Algorithm 3. In terms of the number of real multiples. Algorithm 4 becomes superior to Algorithm 1 for the filter memory lengths $N \geq 8$. white for $N \geq 16$. Algorithm 4 is best in terms of the number of real adds. Furthermore, the complexily of Algorithm 4 is always tower than that of Algorithm 3 and becomes equal to about one quarter of that of Algorithon 3 for sulticiently large N.

Generally speaking, Algorithm 4 performs betler than any of the other four algorithms for the filter memory lengths $N>16$. In the remaining cases, that is, $N=2,4$, or 8 , Algorithm 2 is recommended.

Algorithm 5

In this subsection, we compare the computational complexily of Algorithm 5 to those of Algorithms I and 4. As mentioned previously, Algorithm 5 is developed based on the assumption that the filter memory length is equal to the inpul sequence length, ard, thus that the length of the outpul sequence is twice the input sequence length. Because of this assumption, we cannot employ the relatively simple comparison framework utilizad previously. Thus, the complexity of Atgorithm 5 is considered for two cases: when $N=L$ and when $N<L$. In both cases, we measure the complexity ratios of Algorithm 5 with respect to Nigorithm 1 in terms of the numbers of real multiplies and adds.

The first case we consider is when the length of the input sequence L is equal to the lilter memory length N, that is, when the assumption for Algorithm 5 is satisfied. In this case, the complexity ratios of multiplies and adds are given by
$\mathrm{RM}_{5}=\frac{4+0.25(N+1)+2(2 N+4) \log _{2}(2 N)}{2 N^{2}+N}$
and
$\mathbf{R A}_{5}=\frac{1+3(2 N+4) \log _{2}(2 N)+4 N}{N^{2}+N-1}$.
In Figs. 3 and 4, the complexity ratios, RM_{5} and RA_{5}, denoted by AS are plotted for $N=2,4,8, \ldots, 1024$. For the purpose of comparison, $\mathbf{R M}_{4}$ and $\mathbf{R A}_{4}$ of Algorithm 4 are also plotted in Figs. 3 and4. We see that for each filter memory length, the curves for Algorithm 5 are higher

Fig. 3. Complexity ratios of real multiplies for Algorithms 1, 4, and 5 relative to Algorithm 1 assuming that the filter length is equal to the input sequence length and that $M=2 N$. Al, A4, and A5 represent Algorithms 1,4 , and S, respectively.

Fig. 4. Complexity ratoos of real adds for Algorithmes 1, 4, and s relative lo Algorithm I assuming that the filler lengh is equal to the mpul sequence lenglh and that $M=2 N$. A1, A4, and A5 represent Algorithms 1, 4 and 5, respectivaly.
than those of Algorithm 4. Thus, even for $N=L$. Algorilhm 4 is more efficient than Algorithm 5. II is $N>64$ when Algorithen 5 becomes superior to the standard algorithm, Algorithm I, while Algorithm 4 does when $N>16$.

Next, we consider the case that the filter memory length N is less than the input sequence length $/$. Thus, the actual output sequence length is $L \mid N-1$. In order to apply Algorithm 5 to this situation, the memory length of the Vollerra filter is supposed to be L by appending acros to the non-zero actual Volterra filter coelficients. For this reason. the numbers of real multiplies and adds are same to those for the oulput sequence of $2 I$, samples. As mentioned previously. however, the lenglh of the actual output sequence is $L+N-I$. Thus, the numbers of real multiplies and adds given in Table 1 is inereased by a lactor of $2 L /(L+N-1)$. For simplicity of comparison, we assume that there is a positive number β satisfying $L=\beta N$. Then, the numbers of real multiplies and adds required for computing one outpul point are given by
$\beta \frac{8 N+0.5 N(\beta N+1)+4 N(2 \beta N+4) \log _{2}(2 \beta N)}{(\beta+1) N+1}$
$\beta \frac{2 N+6 N(2 \beta N+4) \log _{2}(2 \beta N)+8 \beta N^{2}}{(\beta+1) N-1}$
respectively. From (19) and (20), we see that the numbers of real multiplies and adds are dependent upon β. This implies that the complexity of Algorithm 5 varies according to the relative length between the filter memory length and input sequence tength under the assumption N
$<L$. This does not give a clear comparison. Thus, for β $=10,1000$ and 100000 , we calculate the complexity ratios of Algorithm 5 relative to Algorithm I by increasing the filter memory length N from 2^{\prime} to $2^{1 s}$. The results are plolted in Figs. 5 and 6. Fig. 5 is for the number of real multiplies while Fig. 6 is for the number of real adds. The curves denoted by A4 in Figs. 5 and 6 are for the complexity ratios of Algorithm 4 under the same condition. In Figs. 5 and 6, we observe that the complexity ratios of Atgorithm 5 increase as β increases while that of Algorilhm 4 is independent of β, that is, the input sequence length. Furthermore, for any value of β. the corresponding curve of Algorithm 5 is higher than that of Algorithm 4, which indicates that Algorithm 4 is more efficient Ihan Algotithm 5.

Fig. 5. Complexily ratios of real multiplies for Algorithms I. 4, and 5 relative to Algotithm I assuming that $L=\beta N$, where $\beta=10,1000$, and 100000 . A1 and A4 represent Algorithms I and 4, respectively.

Fig. 6. Complexily ratios of real adds for Algorithons 1, 4, and 5 relative to Algorithm I assuming that $L=\beta N$. where β - 10, 1000, and 100000 . AI and Ad represent Algorithm I and 4. respectively.

Generally speaking, if the assumption, that the length of the filter memory is equal to that of the input sequence, required for Algorithm 5 is satisfied. Algorithm 5 is more efficient than the standard algorithm, Algorithm 1 for the filter memory lengths greater than 64. Otherwise, the complexity of Algorithen 5 is dependent atso on the ratio of the input sequence length to the fitter memory lengih. For an input sequence relatively longer than the filter memory length, for example, $\beta=1000$ and $N=$ 256, the complexity of Algorithm 5 is much higher than that of Algorithm 1. It is notable that the complexity of Algorithm 4 is lower than that of Algorithm 5 tor any case.

IV. Conclusion

In this paper, we compare five second-order Volterra filtering algorithms in terms of compulational complexity. The algorithms considered in the paper are as follows;

Algorithm 1:Time-domain one and two-dimensional convolution approach based on (I).

Algorithm 2:Time-domain one and two-dimensional convolution approach where the symmetry properties of the quadratic Volterra filter coefficients [1] are utilized when amputing the quadratic component of the Volterra filter output.
Algorithm 3:Frequency-domain fast approach presented in [2].
Algorithm 4:Frequency-domain fast approach of [2] but in which the symmetry properties of frequency-domain quadratic Volterra filter coefficients $[6]$ are utilized.

Algorithm 5 : Fast algorithm proposed in [3].
The computation complexity of each algorithm is measured using the numbers of real multiplies and adds required for implementation. The numbers of real multiplies and adds for each algorithm are summarized in Table I. In order to demonstrale the relative efficacy of each algorithm, the complexity ratios defined by (15) and (16) are computed and piotted for the various filter menory lengths. For this, it is assumed that the segment length M is equal to $2 N$ for Algorithms 3 and 4. For Algorithm 5 , we consider the two cases; $L=N$ and $L=\beta$ N with $\beta=10,10(0)$, and 100000 . Within this comparison framework, we can make several observations, as foliows:

- Algorithm 2 is less complex than Algorithm 1 for any filter length. Furthermore, for large filter lengths, the complexity of Algorithm 2 is half of that
of Algorithm 1 .
- When the Votterra filter memory lengths are greater than or cqual to 32. Algorithm 3 becomes superior to Algorithm 1.
- When the filter memory lengiths are greater than or equat to 16, Algorithm 4 performs better than Algorithm 1. The complexity of Algorithm 4 is about one quarter of that of Algorithm 3 for sufficiently large filter lengths ($N \geq 128$).
- When the assumption for Algorithm 5 is satisfied, it becomes better than Algorithm 1 for the filter memory lengths greater than or equal to 64 , while it is less eflicient than Algorithm 4 for any filter memory length. When the filter memory length is shorter than an inpul sequence, the complexity of Atgorithm 5 shows dependency on the relative lengths between the filter memory and the inpul sequence. Even in this case. Algorithm 4 exhibits less complexity than Algorithme 5.
- According to the results for Atgorithms 2 and 4, the utilizalion of the symmetry properties of the quadralic Volterra filter coefficients in the lime-domain algorithm and the frequency-domain algorithrn reduces the computational complexity.
Clearly, Algorithm 4 is the most efficient one among the algorithms investigated in this paper in terms of the number of real multiplies and adds for $N \geq \mathrm{t} 6$.

References

1. M. Schetzen, The Volterra and Wiener Theories of Nonlineur Systems. John Wiley and Sons, New York, 1980.
2. S. Im and E.J. Powers, "A Fast Method of Discrete Third-Order Volterra Filtering." IEEE Trans. on Signal Procersing, vol. 44, no. 9. pp. 2195-2208, Scptember 1996.
3. M. Morháč, "A Fast Algorithm of Nonlinear Voltera IFillering," IEEE Trans, on Signal Processing, vol. 39, no. 10. pp. 2353-2356. October 1991
4. A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-Hall Inc., New Jerscy, 1975.
5. H.D. Helms, "Fast Fourier Transform Method of Computing Differcnce Equations and Simulating Filters," in B. Gold and C.M. Rader (ed.). IEEE Trans. Audio Electroacoust. vol. AU-15, pp. 85-90, June 1967.
6. S.W. Nam and E.J. Powers, "Application of Higher-order Spectral Analysis to Cubically-Nonlinear System Identification." IEEE Trams. on Signal Processing, vol. 42, no. 7, pp. 1746-1765, July 1994.

ASungbin Im

Sungbin Im was born in Seoul. Korea, in 1963. He received the B. S. and M.S. degrees in electronics enginecring from Scoul National University. Scoul, Korea, in 1986 and 1988, respectively, and the Ph.D. degree in elecIrical and compuler engineering from The University of Texas al Austin, 1994.

In 1995, he joined the Department of Information and Telecommunication Engineering al Soongsil University, Seoul, Korea. His research inlerests lie in nominear signal processing and its application to communications, speech processing, and system modeling.

[^0]: * Department of Information and Telecommusication Engineering, Soongsil University. Manuscript Received:Augusi I, 1997

