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ABSTRACT

The objective of the paper is to compare the computational complexity of five algorithms for computing time-domain 
second-order Voltcrra filter outputs in terms of number of real multiplication and addition operations required for im
plementation. This study shows that if the filter memory length is greater than or equal to 16, the fast algorithm using the 
ovcrlap-savc method and the frequency-domain symmetry properties of the quadratic coefficients is the most efficient 
among the algorithms investigated in this paper. When the filter memory length is less than 16, the algorithm using the 
time-domain symmetry properties is better than any other algorithm.

I . Introduction

Recent research has demonstrated the importance of 
using Volterra filters in nonlinear signal processing and 
nonlinear system modeling. However, since the Volterra 
filter is a nonparametric model |1], in most cases, the 
Volterra filter is characterized by a lar흥e number of filter 
coefficients. In general, the large number of coefficients 
results in high computational complexity, which has 
tended to prevent the widespread application of Volterra 
filters to those practical problems requiring fast compu
tation.

Two fast algorithms were put forward in |2] and [3] for 
reducing the computational complexity associated with 
the Volterra filters. It is notable that both algori나ims 
utilize the FFT algorithm. However, the algorithm presented 
in [2| is based on the one-and two-dimensional overlap
save methods |4] while the algorithm in |3] utilizes the 
one-dimensional FFT-based convolutions when comput
ing the quadratic output of a second-order Vol terra Hltcr. 
In addition, one should consider that the utilization of 
the symmetry properties of the quadratic Volterra filter 
coefficients may reduce the computational complexity. 
Unfortunately, there are no analyses available which indi
cate how much one can save with respect to the 
computational complexity when utilizing the symmetry
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properties. Motivated by these issues, in 나lis paper we 
quantify the computational complexity of each of five 
algorithms in terms of number of real addition and multi
plication operations. In two of the five cases we consider 
the reduction in complexity by considering second- 
order Volterra coefficient symmetries in either the time or 
frequency domains. Furthermore, we provide the com
plexity ratios of the algorithms with respect to the con
ventional algorithm.

The remainder of this paper is organized as follows. 
The following section describes the algorithms and 
quantifies the complexity of each algorithm in terms of 
the number of real multiplies and adds. In Section III, 
each algorithm is compared in terms of complexity ratio 
measured relative to the conventional algorithm. If the 
filter memory length is greater than or equal to 16, the 
fast algorithm using the overlap-save method and the fre
quency-domain symmetry properties of the quadratic 
coefficients is the most efficient among the algorithms 
investigated in this paper. When the filter mem이'y length 
is less than 16, the algorithm using the time-domain sym
metry properties is better than any other algorithm. 
Finally, the paper is concluded in Section IV.

II. Algorithms and Computational Complexity

If we assume that the nonlinear system to be represented 
by a second-order Volterra filter is stable and has finite 
memory, the Volterra filter [1] can approximate the output 
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of the nonlinear system by its sampled data form: the 
output of which can be represented as

N-\ NT N-]
:y(" = £ +£ E h我j，k)x(n-j)x(n~k)

i=0 丿=03=0
(1)

where %(•) denotes the input sequence to the filter, y。) 

denotes the Volterra filter output, and A, (-) and ■) 
represent the linear and quadratic Volterra filter coeffi
cients, respectively. N is the filter memory length. Thus, 
the number of the linear coefficients is N while that of the 
quadratic ones is N2.

In the following, we describe the algorithms considered 
in this paper and compute the number of real addition 
and multiplication required for implementin응 each algor
ithm. Throughout this analysis, we assume that the input 
sequence and the time-domain filter coefficients are real. 
The algorithms based on the time-domain operations take 
advantage of this assumption while those based on fre
quency-domain operations can not since they use complex 
arithmetic operations even for real time series data

A. Algorithm 1 : Standard Algorithm
This algorithm directly utilizes (1) to compute the 

time-domain filter output y(n). As shown in (I), this 
algorithm requires implementation of one and two- 
dimensional convolutions in order to compute the linear 
and quadratic components of the filter output, respectively. 
Note that this algorithm docs not take advantage of the 
symmetry properties of the quadratic filter coefficients, h2 
(7, k) - h2 (k, j), which will be discussed in the next sec
tion.

In this case, to produce one output point in time 
requires N real m니tiplies and N — \ real adds in the linear 
component；and 2V2 real multiplies and N2 — 1 real adds 
in the quadratic component. 1 real add is required for 
summation of each component output which produces a 
final filtered output point. Thus, for one filtered output 
point, the total numbers of real multiplies and adds are 2 
N2 +N and N2 + N —1、rcspectiv이y. This algorithm will 
be used as a base against which to compare the following 
four algorithms.

B. Algorithm 2
It is well-known that the quadratic Volterra coefficients 

can be assumed symmetric without any loss of generality 
[1]. That is,

When utilizing these symmetry properties in computing 
the lime-domain filter output, we should consider the 
symmetry factor 1( j, k), which is defined by

(I, j 、/"=L v ⑶
I 2, j k

because h人j、｛k, j)x(n-k)x(n~J). 
With these symmetry properties, (1) can be rewritten as 
follows:

NT

1=0
(4) N-l N- 1

+ E E / k)x(n-j)x(n-k) 
丿=0 k = j

where 妨侦,册二/(人 k)h2 (j, k).

Algori나2 utilizes (4) rather than (1) to compute the 
time-domain filter output y(n). When counting the num
ber of arithmetic operations required for Algorithm 2, the 
number of multiplies required for computing is not 
taken into account because this cost may or may not be 
relevant depending upon whether the filter coefficients are 
initially given in the form of h2 or h^.

In (4), the number of linear coefficients is N、while the 
number of quadratic coefficients (j, k) is N(N +1)/2. 
Th니s. to produce one cmlpul point in time requires N real 
multiplies and N — 1 real adds in the linear component； 
and NtN real multiplies and +1 )/2 — 1 real 
adds in the quadratic component. In addition, 1 real add 
is requi red for summation of linear and quadratic 
component outputs. Thus, for one filtered output point, 
the total numbers of real m니tiplies and adds are N2 +2 
N and O.5N2 +1.5/V— 1, respectiv이y.

Algorithms 1 and 2 utilize the time-domain real arith
metic operations based on the time-domain Volterra 
filters (1) and (4), respectively. However, Algorithms 3 to 
5, which will be discussed in the following, employ the 
discrete Fourier transform (DFT) and inverse DFT 
(IDFT) algonthms, with the complex arithmetic operations 
in the frequency domain, to compute the filtered outputs. 
Actually, 나｝ese algorithms utilize an M-point radix-2 FFT 
algorithm rather than the DFT algorithm. It is known 
that the M-point radix-2 FFT algorithm requires appro
ximately 2A/log2A/ real multiplies and 3<Wlog2A/ real adds 
[5].

The relationship between complex and real arithmetic 
operations is given by

h2(7, k) = h2(k, j) (2)
1 complex add = 2 real adds (5)
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1 complex multiply = 4 real m니liplies (6)
+ 2 real adds.

C. Algorithm 3

Algorithm 3 presented in [2] is a fast algorithm for 
computing the time-domain output of a second-order 
Volterra filter using the corresponding tie아ucncy-domain 
Volterra filter and the overlap-save method. The discrete 
freq니ency・domain version |2] of the time-domain Volterra 
filter (1) is given by

Y (m) = H, (m) X(m)
(7) N-\ M-\

+ E E H2(p, q)X(p)X(q)dM(m-p~q) 
o <?-o

where

(1, if (m modulo M) 0 ,、
"(m)= , 、 ⑻

I 0, if (m modulo Af) 0

In (7), Y (m), X(m), H\ (m), and H2 (A q) are DFT's of 
>(w), x(n\ h\ (n), and h2(7,左)，respectively. Note that(>w(') 
is a modulo function.

In order to compute the time-domain filter output, 
Algorithm 3 utilizes the frequency-domain Volterra filter 
(7), the overlap-save method [4], [5|, and the M-point 
radix-2 FFT algorithm [2]. First, an M-poinl segment 
consisting of %(•) which overlaps a previous segment by 
N points (M > N), is transformed by using the M-point 
FFT algorithm. An M-point output segment of Y is 
computed by applying the frequency-domain Volterra fil
ter (7) to the FFTed input segment 1^(0)X(A/-1)|. 
This output segment is inverse transformed into the time 
domain. The first N-~\ points in the inverse FFTed out
put segment should be discarded because these points are 
incorrect due to the circular convolution effect. The re
maining correct M — N +1 points arc appended to those 
from the previous output segments, which correspond to 
the time-domain filter output points.

Note that the arithmetic operations involved in Algor
ithm 3 are complex operations. First, we compute the 
computational complexity of Algorithm 3 in terms of the 
number of complex operations, and then, use (5) and (6) 
to transform the number of complex operations to the 
number of real operations. Since Algorithm 3 uses the 
FFT algorithm and the sectioning technique to implement 
a linear convolution, the computational complexity of the 
algorithm depends also on the complexity of the FFT 
algorithm. Algorithm 3 requires only two onc-dimensional 

FFT s to transform each input and output segment and 
one one-a nd two-dimensional FFTs to transform the lin
ear and quadratic Volterra filter coefficients, respectively. 
However, we do not take the latter one- and two- 
dimensional FFT's to transform the linear and quadratic 
Volterra filter coefficients into consideration when 
counting the number of arithmetic operations, since this 

cost may or may not be relevant depending upon whether 
the Voltcrra filter coefficients arc initially given in the fre
quency domain or time domain. To further reduce the 
complexity, we assume that the length of each input seg
ment, M、(to be transformed) is a power of two.

For one output Frequency bin, Algorithm 3 requires 1 
complex multiply in the linear component ； 2M complex 
rm山i이ies and M — 1 complex adds in the quadratic 
component ； and 1 complex add for the summation of lin
ear and quadratic outputs. Thus I +2M complex multiplies 
and M complex adds are required for one oulp니I fre
quency bin. These numbers of complex arithmetic 

operations arc equivalent to 4(1 +2M) real multiplies and 
2M +2(1 +2M) real adds according to (5) and (6). This 
leads to a total of 4A/(1 +2M) +2(2A/log2A/) real 
multiplies and 2M2 +2M(1 +2M) +2(3A/log2A/) real 
adds per segment, which include the complexity of the 
M-point radix-2 FFT algorithm mentioned previously. 
Note that an output segment consisting of M points 
contains M-/V+I correct time-domain output points. 
For one filtered output point, therefore, the total number 
of' real multiplies and adds are {4A/(1 +2M) +2(2初og”材)} 

/{M-N +1) and {2M2 +2M(1 +2A/) +2(3A/log2A/))/ 
(M — N +1), respccliv이y.

D. Alg아狂hm 4
As Algorithm 2 니lilizes the symmetry properties in the 

time domain, Algorithm 4 introduces the symmetry prop
erties of the frequency-domain quadratic Volterra filter 
coefficients into Algorithm 3. The frequency-domain 
quadratic Volterra filter coefficients have the following 
symmetry properties [6]；

W%") (9)

니tilizing these symmetry properties in computing filtered 
output points, as in Algorithm 2, we should consider the 
frequency-domain symmetry factor I(p, q), which is 
defined as (3). However, when counting the number of 
m니tiplies, we do not take the multiplies for the symmetry 
factors into account for the same reason stated in Algorithm 
2. The number of the quadratic terms which contribute to
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M M
Y (wt) reduces to — + 1 or — depending on whether the 

output frequency bin number m is even or odd, respecti- 

vely. The numbers of even and odd ms are — + 1 and
M

-厂，respectively. The reason for this is that the time-do

main sequence is real.
For an even bin m, Algorithm 4 requires 1 complex

M
multiply in the linear component；2(——I니) complex multi-

M
plies and — complex adds in the quadratic component ；

and 1 complex add for the summation of the linear and 
quadratic components. For an odd bin, 1 complex multiply 

M
in the linear component ； 2(^—) complex multiplies and 

M
——1 complex adds in the quadratic component; and 1 
complex add for the summation are required. Thus, for 
an M-point frequency-domain o니tput sequence, the total

numbers of complex multiplies and adds are A/ 2 +24/ 

+ 3 and -M +1, respectively. Thus, for an M- 

point lime-domain output segment (actually, only M-N 
+ 1 points are valid), 2M2 +8M +12 +2(2Mlog2 M) real 

multiplies and -y M2 M +8 +2(3A/log2A/) real adds 

are needed. Finally, for one filtered o나Iput point in the 
time domain, the total number of real multiplies and adds 
are {2M2 +8A/ +12 +2(2Mlog3M)}/(M-/V +1) and

M +8 -F2(3Mlog2M)}/(A/-iV + l), respe-

cliv 이 y.

E. Algorithm .5

The basic idea of Algorithm 5 proposed in [3| is to re
duce the computational complexity of the second-order 
Volterra filter by replacing the two-dimensional convol
ution of the quadratic Volterra filter with several 
one-dimensional operations based on the one-dimensional 
FFT and IFFT algorithms. Al융。「Mm 5 decomposes the 
LX L quadratic Volterra filter coefficient matrix of (1) 
into L filter coefficient vectors of size 2L X 1 each. In [3], 
it is assumed that the filter memory size is equal to the 
length of the input sequence. For this reason, the no
tation for the system memory length is different from N 
of (1). Generally, it is known that a convolution of two 
sequences of length L generates an output sequence of 
(2L — 1) points. In [3], however, one zero is appended to 
the output sequence so that the length of the sequence 

becomes 2L. The filter coefficient vectors are defined by

奶니0,…,0, A(0, /), A(l, j +1),...
HI (10)

A (A — j — 1, L — 1), ]r

I J 匚~스 I

where y = 0,...,L —1. The quadratic input vectors are 
constr니cted as follows;

|r(0)r(7), +1),...
…,％03 —l)x(Sl), 0……(11) 

I 스—L > I

Algorithm 5 applies 나}e 2L-point FFT to the vectors hj 
and xj for /— 1. Then, the following illation is 
used for computing the frequency-domain quadratic out
put sequence；

匕(/)=払"琮/) +2 £ (12)

where ? = 0, 1 In (12), Hj(?) and Xj(?) rep
resent the z-th component of the frequency-domain 
versions of h} and x；, respectively. The time-domain 
디uadralic output sequence is obtained by applying the 
IFFT to Y2(?) with z =0, 1 1. In this algorithm,
note that the length of the coefficient vectors hj depends 
on the input-output sequence not on the system memory 
size N. For this reason, it is difficult to compare Algor
ithm 5 with the previous algorithms. Thus, in the follow
ing section, we consider two specific cases to facilitate 
comparison with the previous algorithms.

On the basis of a careful analysis of the algorithm pro
vided in [3], we have counted the number of real 
multiplies and adds required for implementing Algorithm 
5, because the complexity analysis of Algorithm 5 pro
vided in [3] is not sufficient for this study. For each 
time-domain output point, the total number of the real 

multiplies is given by

4P+3(2Plog2P) +~L{L+\) +(2L +1) (2Plog2P)
— ,

(13) 
while the number of the real adds is

2F+3(3 尸 k)gM +(2L +1)3就汶)+4〃 +4£(L-1) +2L
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In (13) and (14), as in [3], we assume that the time
domain Volterra filter memory size is equal to that of the 
input sequence L. P represents IL.

HI. Comparison

In Table I, we summarize the numbers of the real 
multiplies and adds required for implementing each algor
ithm. In Table I, N and M denote the filter memory size 
and the section length of the FFT, respectively, while for 
Algorithm 5, L represents the length of the filter memory 
and the input sequence and P = 2L. Note that Algorithm 
5 assumes that the filter memory length should be eq나al 
to the length of the input sequence to the second-order 
Volterra filter. Thus, it is difficult to directly compare the 
computational complexity of Algorithm 5 with those of 
the remaining algorithms. For this reason, we will com
pare the complexity of Algorithm 5 in a subsequent sub
section.

In order to compare the computational complexity of 
the algorithms, the computational ratios of the real 
multiplies and adds of each algorithm are computed with 
respect to Algorithm 1 for various filter memory lengths. 
The ratios are defined as follows;

RM Number of Multiplies for Algorithm i (「»
'히" Number of Multiplies for Algorithm 1

and

Number of Adds for Algorithm i /1Z.
RA, —--------------------------------------------- (16)

Number of Adds for Algorithm 1

-
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where i-\, 2, 3, and 4. RM, and RA? represent the com
plexity ratios of real multiplies and adds required for 
implementing Algorithm i, respectively. For Algorithms 3 
and 4, we have two variables to consider: the filter mem-

Fig. 2. Complexity rations of real adds for Algorithms 1 to 가 

r미alive to Algorithm I assuming M = 2N• Al to A4 rep
resent Algorithms I to 4, respectiv이y. 

Table 1. Computational complexity measured in terms of the number of real multiplies and adds required to compute 
one filtered output data point. N and M denote the filler memory size and the section length of the FFT, re
spectively. For Algorithm 5, L represents the len이.h of the filter memory and the input sequence and P = 2L.

Algorithms

1

2

3

No. of Real Multiplies

2/V2 +A「

N2 +2N

4M(1 +2M) +2(2Mlog2M)
M—N + \

No. of Real Adds

N2 3—1

0.5/V2 +1.5 丿V一!

+ZW(I +2M) +2(3Mlog2M)

4 2 A/2 +8M +12 +2(2 初 og：W) 1.5Af2 +5.5M +8 +2(3 沏 log?〃)

M~N +1 M~N +1

5 4F+0.5匕以，+1) +(2L +4) (2尸Iog2 0 
2L

2P +(2匕 +4) (30og2尸)匕

2L
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ory length N and the FFT segment length M. For sim
plicity of comparison, the segment length M is set to 2N、 
where N is assumed to be a power of 2. Figs. 1 and 2 
show the complexity ratios of each algorithm in terms of 
the number of real multiplies and adds, respectively. N 

varies from 기 to 2,n. In Figs. 1 and 2, Al through A4 
represent Algorithms 1 to 4, respectively.

Since the complexity ratios are computed with respect 

to Algorithm 1. the curves of Algorithm 1 denoted by Al 
in Figs. 1 and 2, are equal to 1 for each filter memory 
length. We see that the complexity ratio curves of Algor
ithm 2 arc always lower than the curves of Algorithm 1 
and converge to 0.5 as the filter length N increases. This 
implies that the complexity of Algorithm 2 is appro- 
ximal야y half of the complexity of Algorithm 1 for a 
sufGciently large N. This complexity reduction is obtained 
by utilizing the symmetry properties of the time-domain 
quadratic Voltcrra filter coefficients in computing the 
Voltcrra filter outputs.

The complexity ratio for Algorithms 3 decreases expo
nentially for the various filter memory lengths. Note that 
Figs. 1 and 2 are plotted in log scale. For the filter mem

ory leng나］s N 藉 \ 6, the complexity ratios of multiplies for 
Algorithm 3 are less than 1, while those of adds fbr Al
gorithm 3 become less than 1 when N 그 32. This indicates 
that Algorithm 3 becomes superior to 
Algorithm 1 in tenns of the number of real multiplies and 
adds for N 그 32. This efficacy is obtained because of the 
use of the discrete frequency-domain Vierra filter and 
the l-D FFT algorithm, as opposed to performing 1-D 
and 2-D convolutions in the discrete time domain.

The complexity of Algorithm 과 decreases more rapidly 
than that of Algorithm 3 asincreases. This is due to 
the use of the frequency-domain symmetry properties in 
addition to use of the discrete f「cq나ency-domain Volterra 
filter and the 1-D FFT algorithm in Algorithm 3. In 
terms of the number of real multiples. Algorithm 4 
becomes superior to Algorithm 1 for the filter memory 
lengths 시 4 8, while for N 그 16, Algorithm 4 is best in 
terms of the number of real adds. Furthermore, the com
plexity of Algorithm 4 is always lower than that of Algor
ithm 3 and becomes equal to about one quarter of that of 
Algorithm 3 for s니ficicntly large N.

Generally speaking, Algorithm 4 performs better than 
any of the other four algorithms for the filter memory 
leng나is N 그 16. In the remaining cases, that is, N~= 2, 4, 
or 8, Algorithm 2 is recommended.

Algorithm 5

In this subsection, we compare the computational com
plexity of Algorithm 5 to those of Algorithms 1 and 4. As 
mentioned previously, Algorithm 5 is developed based on 
the assumption that the filter memory length is equal to 
the input sequence length, and, thus that the length of the 
output sequencc is twice the input sequence length. 
Because of this assumption, we cannot employ the rela
tively simple comparison framework utilized previously. 
Thus, the complexity of Algorithm 5 is considered for 
two cases: when N — L and when TV < L. In both cases, 
we measure the complexity ratios of Algorithm 5 with re
spect to Algorithm 1 in terms of the numbers of real 

multiplies and adds,

The first case we consider is when the length of the 
input sequence L is equal to the filter memory length TV, 
that is, when the assumption for Algorithm 5 is satisfied. 
In this case, the complexity ratios of m니iiplies and adds 
are given by 

RM5 =
4 +0.25(N +1) +2(27V +4)log2(2 丿V)
'― 2A" +N 

and

A 1 +3(2N +4)log2(27V) +47V
RAs =-------------------------------------

(17)

(18)N2 +N-1

In Figs. 3 and 4, the complexity ratios, RM 5 and RA5, 
denoted by A5 are plotted for N=2, 4, 8,..., 1024. For 
the purpose of comparison, RM4 and RA4 of Algorithm 
4 are also plotted in Figs. 3 and4. We see that for each fil
ter memory length, the curves for Algorithm 5 are higher

Fig. 3. Complexity ratios of real m니tiplies for Algorithms 1, 4, 
and 5 relative to Algorithm 1 assuming that the filter 
length is equal to the input sequence length and that 
M = 2N. Al, A4, and A5 represent Algori나ims 1, 4, and 
5, respectively.
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2 4 8 16 32 64 128 256 512 1024
Filter Memory Length N

Fig. 4. Complexity ratios of re시 adds for Algorithms 1, 4, and 
5 r이alive to Algorithm I assuming that the filler length 
is equal to the input sequence length and that M = 2N. 
Al, A4, and A5 represent Algorithms 1. 4 and 5, re
spectively.

than those of Algorithm 4. Thus, even for N = L, Algorithm 
4 is morc efficient than Algorithm 5. It is > 64 when 
Algorithm 5 becomes superior to the standard algorithm, 
AlgoEhm 1, while Algorithm 4 does when N 16.

Next, we consider the case that the filter memory 
length N is less than the input sequence length L. Thus, 
the acl니al output sequence length is L N — 1. In order 
to apply Algorithm 5 to this situation, the memory length 
of the Voltcrra filter is supposed to be L by appending 
zeros to the non-zero actual Volterra filter coefficients. 
For this reason, the numbers of real multiplies and adds 
are same to those for the output sequence of 2L samples. 
As mentioned previously, however, the length of the 
actual o냐［pul sequence is L +N~\. Thus, the numbers 
of real multiplies and adds given in Table I is increased 
by a factor of 2L/{L +JV- 1). For simplicity of compari
son, wc assume that there is a positive number p 
satisfying L = §N. Then, the numbers of real multiplies 
and adds required for computing one output point are 
given by

8N +0.5 JV(伽 +1) +4 丿V(2 伽 +4)1陀(2伽)
' (/? +而£1

2N +6 丿V(2QV +4)log2(20 丿V) +耶 N》
1 (g+1)N — l (丿

respectively. From (19) and (20), we see that the numbers 
of real multiplies and adds are dependent upon p. This 
implies that the complexity of Algorithm 5 varies accord
ing to the relative length between the filter memory 
length and input sequence length under the assumption N 

< L. This does not give a clear comparison. Thus, for p 
=10, 1000 and 100000, we calculate the complexity ratios 
of Algorithm 5 relative to Algorithm 1 by increasing the 
filter memory length N from 2' to 기‘. The res니Is are 
plotted in Figs. 5 and 6. Fig. 5 is for the number of real 
multiplies while Fig. 6 is for the number of real adds. The 
curves denoted by A4 in Figs. 5 and 6 are for the com
plexity ratios of Algorithm 4 under the same condition. 

In Figs. 5 and 6, we observe that the complexity ratios of 
Algorithm 5 increase as p increases while that of Algor- 
i나im 4 is independent of fi, that is, the input sequence 
length. Furthermore, for any value of p, the corres
ponding curve of Algori나im 5 is higher than that of 
Algorithm 4, which indicates that Algorithm 4 is more 

efficient than Algorithm 5.

Fig. 5. Complexity ratios of real multiplies for Algorithms 1, 4, 
and 5 relative to Algorithm 1 assuming that L =阡1、 
where 0=10, 1000, and 100000. Al and A4 represent 
Algorithms 1 and 4, respectively.

Fig. 6. Complexity ratios of real adds for Algorithms 1, 4, and 
5 iclative to Algorithm 1 assuming that L = where g 
=10, 1000, and 100000. A1 and A4 represent Algorithm 
1 and 4, respectively.
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Generally speaking, if the assumption, that the length 
of the filter memory is equal to that of the input se- 
q낞ence, required for Algorithm 5 is satisfied, Algorithm 5 
is more efficient than the standard algorithm, Algorithm 
1 for the filter memory lengths greater than 64. Other
wise, the complexity of Algorithm 5 is dependent also on 
the ratio of the input sequence length to the filter mem
ory length. For an input sequence relatively longer than 
the filter memory length, for example, p= 1000 and N = 
256, the complexity of Algorithm 5 is much higher than 
that of Algorithm 1. It is notable that the complexity of 
Algorithm 4 is lower than that of Algorithm 5 for any 
case.

IV. Conclusion

In this paper, we compare five second-order V이terra 
filtering algorithms in terms of computational complexity. 
The algorithms considered in the paper are as follows；

Algorithm 1 : Time-domain one and two-dimensional 

convolution approach based on (1).
Algorithm 2： Time-domain one and two-dimensional 

convolution approach where the symmetry 
properties of the quadratic Voltcrra filter 
coefficients [1] are utilized when comput
ing the quadratic component of the Volterra 
filter output.

Algorithm 3 : Frequency-domain fast approach presented 
in⑵.

Algorithm 4: Frequency-domain fast approach of [2] 
but in which the symmetry properties of 
frequency-domain quadratic Volterra fil
ter coefficients [6] are utilized.

Algorithm 5: Fast algorithm proposed in [3].

The computation complexity of each algorithm is 
measured using the numbers of real multiplies and adds 
required for implementation. The numbers of real 
multiplies and adds for each algorithm are summarized in 
Table I. In order to demonstrate the relative efficacy of 
each algorithm, the complexity ratios defined by (15) and 
(16) are computed and plotted for the various filter mem
ory lengths. For this, it is assumed that the segment 
length M is equal to IN for Algorithms 3 and 4. For 
Algorithm 5, we consider the two cases；L = N and L = p 
N with g= 10, 1000, and 100000. Within this comparison 
framework, we can make several observations, as follows：

• Algorithm 2 is less complex than Algorithm 1 for 
any filter length. Furthermore, for large filter 
lengths, the complexity of Algorithm 2 is half of that

of Algorithm 1.
-When the Volterra filter memory lengths are greater 

than or equal to 32, Algorithm 3 becomes superior 
to Algorithm 1.

• When the filter memory lengths are greater than or 
equal to 16, Algorithm 4 performs better than Algor
ithm 1. The complexity of Algorithm 4 is about one 
quarter of that of Algorithm 3 for sufficiently large 
filter leng나｝s (丿V 그 128).

• When the assumption for Algorithm 5 is satisfied, it 
becomes better than AlgoEhm 1 for the filter mem
ory lengths greater than or equal to 64, while it is 
less efTicient than Algorithm 4 for any filter memory 
length. When the filter memory length is shorter than 
an input sequence, the complexity of Algorithm 5 
shows dependency on the relative lengths between 
the filter memory and the input sequence. Even in 
this case. Algorithm 4 exhibits less complexity than 
Algorithm 5.

-According to the results for Algorithms 2 and 4, the 
utilization of the symmetry properties of the quad
ratic V이terra filter coefficients in the time-domain 
algorithm and the frequency-domain algorithm 
reduces the computational complexity.

Clearly, Algorithm 4 is the most efficient one among 
the algorithms investigated in this paper in terms of the 
number of real multiplies and adds for N > 16.
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