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Floating-Point Quantization Error Analysis in Subband Codec System

*Kyu-Sik Park and **Sung-Il Bang

Abstract

The very purpose of subband codec is the attainment of data rale compression through the use of quantizer and optimumt
bil allocation for each decimaled signal. Yetl the question of floating-point guantization cffects in subband codec has
received scant attention. There has been na direct focus on the analysis of quantization errors, nor on design with
quantization errors embedded explicitly in the criterion.

This paper provides a rigorous theory for the modelling, analysis and optimum design of the general M-band subband
codec in the presence of the floating-point quantization noise. The floating-point quantizers arc embedded into the codec
struclure by its equivalent multiplicative noise model. We then decompose the analysis and synthesis subband filter banks
of the codec into the polyphasc form and construct an equivalent time-invariant structure to compute exact expression for
the mcan square guantization error in the reconstrucled oulput. The optimum design criteria of the subband codec is given
to the design of the analysis/synthesis filter bank and the floating-poinl qQuantizer to minimize the output mean square
error. Specific optimum design examples are developed wilh iwo types of filter banks-orthonormal and biorthogonal filter

bank, along with their perpormance analysis,

1. Introduction

The purpose of the subband coding is to decompose
the input signal [requency band into a set of uncorrelated
frequency bands by subband filtering and then to encode
of these subbands using a  bit  allocation rationale
matched to the signal cncrgy in that subband. For the
same distortion level, the total numbcr of bits nceded lo
transmit encoded subband signal is less than the number
needed to transfer the signal directly. This reduction in
it rate is called (data) compression.

Subband coding has heen proposed for many appli-
cations in the field of audio and video compression such
as MPEGI1, MPEGII, Dolby AC-3. Presently the modulated
DCT type subband hlter bank is the standard in those
compression algorithms.

Over lhe last decade, the subband coding theory has
been reached a high level of maturity of perfect recon-
struction(PR) systems withoul considering coding errors
such as quantization. In the absence of coding errors,
many different classes of perfect reconstruction(PR) filter
banks(FBs) have been described in the literature. Good

accounts of the one-dimensional PR FB theory are given

*Dept. of Informalion and Telecommunication, Sangmyung
University
**Dept. of Electronics Engineering, Dankook University

Manuscripl Received : April 21, 1997,

in [1)-[5] and the medulated DCT type filter bank is onc
of this kind. However, in the actual system, the signals
are quaniized before lransmission to the receiver side and
reconstrucled by the synthesis FB. Thus the quantization
cffects must be carefully constdered in the subband codec
system design. In other words, to improve overall perfo-
rmance of the subband codec by reducing the quanti-
zation effects, we must sclect the analysis/synthesis filler
bank that minimize the quanlization error in the codec.

In the presence of fixed-poinl quantizer in codec,
westerlink, et. al[6} embed the equivalent noise model of
the fixed-point quantizer in a two channel subband filter
bank and analyze the resulting structure in a deterministic
way. In Ref. |7], A. Tababai propased the cyclo-stationary
concepl for the analysis of lixed point quantization effects
in two channcl filter banks. In Ref. [8), K. Park proposed
the polyphase concept for the timc-invarjant analysis of
quantization effects for general M-band subband codec,
This approach avoids the complications arise from the
time-varytng analysis of the cyclo-stationary approach.
Howevcr, all these papers arc restricted to the fixed-point
quantization.

Recently, N. Uzunl9] genralizes and cxtends the idea
from the fixed-point case to the floating-point casc in a
two channel filter bank by using the time-varying nature
{cyclostationary) of the subband signals. But the idea was

restricted to the only two channel case because of Lhe
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analysis complexity.

The purpose of this paper is to provide rigorous analysis
for the floating-point quantization effects in gencral Af-band
subband codec. We develop an optimum subband codec

design methodology based on two concepts:

* design subband filter bank:we employ the polyphase
decomposition technique and embed the multiplicative
noise model for the floating-point quantizer. This poly-
phase conslruction and quantizer model ebnables us to
calculate the MSE in a closed form lime-domain formula.
The minimization of this MSE is the objective of the
optimum subband filler bank design described herein.

= design floating-point quantizer:the bil allocation that
minimize the ovtpul MSE is the design criteria for the
optmum quantizer.

Specific optimal design examples for two-channel
orthonormal FB and biorthogonal FB are given lo dem-
onstrate our design methodology.

1. Background Theory

A. Floating-point quantization model
In {loating-number number system, the number v is
represented as

v = sign{v)mg* 1))

where sign() is the signum function, » is manlissa, € is
exponents and § is the base of the floaling-point number
system. With a assumption of no under or overflows
from the number range, there arise roundoff error only
due to the rounding of mantissas, because exponents are
integer. Roundofl error in floating-point can then be
modeled as multiplicative error(10]. It is defined as

v —v (m' — m)

£ = = (2)

1 m

where v, v” are input to the quantizer and quantized out-
put, », m are infinite precision mantissa and quantized
mantissa, and € is a mantissa roundoff error. Then the

quantized output can be represented as

3

vV =uvr =v(l4¢) =v+ ve 3)

where ¥ =1 +€ as shown in figure 1.
Nole that the floating-point quantizer has the property

that the roundoff error are zero mean, and orthogonal to
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Figure 1. {a) Floating-point quantizer, {b)multiplicative noise
model.

the input to the quantizer[10]

Eld =0, Elew] =0 @

B. Polyphase decomposition of M-band filter bank

The maximally decimated AM-band filter bank structure
wilh floating-point quantizers is shown in figure 2.

For this structure, we assume FIR filters of length NAM
for the analysis and synthésis filters. The total data rate
in samples/second is unaltered from x(n) to the set of
subsampled signal {v,(n), £=0, 1--, M —1} as implied by
the term maximal decimation or critical subsampling.

Using the polyphase decomposition technique, we can
express cach analysis/synthesis filter H,(z), G,(z)} in
terms of M polyphasec components

M-
Hi(z) = Y. 27 Hia(2M), (5)

=0

X

-1
Gi(z) = Z z[M—l)_'GMMq_;)(zM).

=0

Then we can represent the analysis filter bank in terms of

the M X M polyphase matrix $,(2) such as

Hoo(z) Hoa(z) Hop1(2)

II]O z “-{l.l z III' -l z

= | ) B )
HM—:,D(Z) HM—],](Z) HM-I.M—I(Z)
(6}

where H, ) are kth polyphase components of the pth cor-
responding analysis filter. For the synthesis filter bank,
we define a polyphase matrix €, {2} =J @7 (2) in the same
manner where J is Lhe counter identity matrix[4]}

00 -0

1
00 -1 0 M
J=| ]

i1 0 -~ 00
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Ho(2) 2ol ) 2l Qo M Go(2)
0L e PR o —m)—] a) [oX
L zp-1(n) vm-1(n) _J
Huy-1(2) M OM-1] M Gum-1(z)

Figure 2. M-band subband codec system with floating-point

quanlizers

Then each multiplicative noise model for the floating-
point quantizer is embedded into the structure. We
replace the bank of filters by its polyphase equivalent and
shift the samplers to the left and right of each polyphase
matrix by using the noble identity shown in figure 3. This
gives the polyphase equivalent structure of figure 4.

_@_&L ~ e
~@—

F(z) L—-@—— = P(zM) b
Figure 3. Noble identity.
fo
z(n) o(n vo(n) é lo(nm
1
27V ~f1(n vi (n) % M (n oV
Ho(z) ML Gp(z) :
- fwa(n) b @Z‘é‘ y(m)
M-1(n iM—1(f

Figure 4. Polyphase equivalent structure

In our model of figure 4, v, i, €; ar¢ input to the
quantizer, quantized output, and the quantization error
for the fth channel. From Eq. (3), (4), we see that

2 2
= o“'_‘

E[r,'] =1, T, E[E.‘f_,‘] = 0, E[e.-v.-] =0 (8)

Figure 5 is a equivalent vector-matrix representation of
figure 4 where £7 () =[£0(1), & 602),+. & -1 0)) and v ),
z{n), n(n) are similarly defined. At this point the system
is lime-_invariarlt from é(n) to 2(”) at the slow clock rate,

5

7] where /| is the sampling rate of the input signal.

() R 12(~)

Gi{(z)

Figure 5. Vector-maltix equivalent structure

Without considering quantization from figure 5, the
perfect reconstruction is achieved by satisfying the following
sufficient condition
P(z) = G Hal2) = 7 Irsxa )
so that the input signal x(») can be recovered from the
reconstructed oulput y{») within a time shifl.

Many different classes of FIR PR filter banks in the
absence of quantizer errors have been described in the lit-
erature]1]-{5). However, only two types of FiR filter bank,
namely the orithonormal FB and the biorthogonal FB are
considered in this paper.

. Quantization Error Analysis

We define the total quantization error as a difference

1,(z) = n(2) —1,(2) (10)

where the subscript “o” implies the system without the
quantizers. From figure 4, the quantized output for the
ith channel is

vi(n) = vi(n)ri(n) = vi(n) + vi{n)ei(n) an
By defining v, 00 S v;(n)e;(n), V. (2)=Z{v,(n)}, we
have ¥’ (2) =V {2z} +V, (2) Then we see that the output

vector from figure 5 becomes
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1(z) = G (2)V'(2) = Go(2)[¥(2) + V.(2)) 2

where V'(2)=| VO’(Z), Vl’(z},---, VA;_,(z)]". For the case of

no quaniization, r,(2) becomes

1,(2) = G, (2YHo(2)€(2) = Go{2)V(z) (13)

where V{(2)=3,(2){(2). Then the tlotal quantization
error al the reconsiructed output due 1o the MNoaling point
quantizer s
1(z) = 5z} —17,(2)
= G,(2){¥{z) + V. (2)] - G,(2)¥(2) (14)
= G(2)L(z)

Since v and € are uncorrelated from our quantization
model, the output covatiance matrice of #,(2) can be casily

derived as
Hy o fml =G, .+ Ry, (m)x (G, J)" (15)

Futhermore at m=0, it becomes

Nt N
Ron [0)= 32 3 {JG) R (G = K)G,pd}  16)
j= k=0

where R,, .. [md=E[v.(n) vi(n+m)l is the M X M cor-
relation matrix of ve(n) and G,  is polyphase coefTicient
matrix of @, (2) =2} 1 G2 "

We now consider the quantized system of figure 4, §.
We can demonstrate that R, ,[0] is the covariance of the
Mth block output veclor

n'{n) = [mo(n),m(n), - nar-r(n)]
= [y(Mn),y(Mn+1),--- y(Mn+ M - 1))

{an
such that
Ry {Mn, Mn)
Ry(Mn + 1, Mn)
Rn_n[0]= -
Ry{Mn+ M —1,Mn)
Ry(Mn, Mn+M-1)
Roy(Mn+ 1, Mn+M-1) a8
. 18

Ry(Mn+ M — |, Mn + M ~1)

where R,,(Mn+k  Mn+;)=E(y(Mn+R)y(Mn3 7]
for 2, =0, 1 ---, M — 1. Nofe that this is cycloslationary
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the covanance maltrix of the next black of M outputs will
also equal to R, ,[0]. Each block of M outpul samples
will thus have sa_ir;w sum of variances, We take the MS
vialue of the output on the average of the diagonal

elements of Eq. (18}

1 M- s ) 1 A?_:I
Af X Ry (Mn 4 g Mu 4 j) = 47 ,)_1, Ely*(afn + 1))
1

= EI'I‘:LN‘{Hﬁ[U]}. av)

We now deline quantization error at the system output

us
ve(n) £ y(n) — yoln). {20)

where y(n) is the system oulput from figure 4 and y,(#)
is lhe output without the quantizer. Then the total mean

squate(MS) quantization error at system oulput is

BTG = ; Trace [ Ry , [0]) @

e

2
U!«

Furthermore, by subslituting Eq. (16) inte Eq. (21), we
oblain

1 N-1N-1 T )
T = MT”‘CE[Z 2 GosRun (1= K)Gorl 2
1=0 k=0
Then by cxpanding the polyphase coefficient matrices
1Gy o 7=0, 1=~ M—1} in lerms of the corresponding
synthesis filter coefficients

qul A ) M)+ 1)
a3 g{Mi+1)

go(Mj+M-1)
a(Mj+ M-1)

Cgna(Mj M - 1)
(23}

M) gaa (W) 1)

in Eq. (22), and by using

R.,,‘.,,, [m] = Ry, [ R, [ml, Rc.c,{m} = az d;-;8(rn]
(24)

where 2(n) and €(n) uncorrelated, we can show that the

{olal MS quantizatin crror at the output is

] M-I MN-—

2 _ 1 2 2 3¢y (25}
R L WU

=0
where oi is the variance of subband signal and 6. is the
variance of quantization error on the fth channel of the
subband codec.

From Eq. (25), the variance of the subband signal, af,‘,
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can be obtained from the correlation function R,, ,(m)
such that

0% = Ry (0) = Reir, (0) = ) D Ai(k}A(DRou(k — 1)
£ (6}

To get the vartance of quantization crror, al =varle;],
we assume Lhat (he input x(22) is AR(]) source with unit

variance such that
Re(m) = atph™ 27)

where ¢! =var(x}=1 and p is correlation coefficient.
With an floating-point number in a form ol v=m2*
where 2 is mantissa between 172 and 1, and e is un
inleger exponent, if we quantize mantissa to R bits, then
the quantized output

v=vr=0v(l+¢), —27R<e<2 R 28)

where € is assumed to be uniformly distributed in the
range {(—27% 27%). This assumplion is valid when the
word length is nol too short[10]. In this case, the noise

variance is given by
2 _
o, = 12 (29)

Finally, by taking account Eq. {26) and (29) into Eq.
(25) the output MS quantizalion error hccomes

? 1 M 2 2 Mi-l ZU)
a = — a7, g,
ve M =0 I=0
1 M2 L o, ! 2:
= W (5o bkl it - r)]{l—z-z 1Y gin
=0 &k ] =0

(30)
Thus we have formulated the output MSE in terms of the
analysis/synthesis filter coefficients &;(#), g;(n) of length
MN, input autocorrelation function R[], and R; the
bits allocated to each channel.

I¥. The Optimum Fiiter Banks

In this scction, we briefly review the properties of
orthonormal and biorthogonal FB. The PR conditions in
the absence of quantization ecrror is given for the
two-channel filter banks. These type of filter banks will
be used as a oplitmum design examples in the next section.

Orthonormal filter Bank

Perfect reconstruction(PR) can be achieved by ortho-

normal(or lossless) filier bank(1)(5]. Orthonormality con-
dition implics

Hl2)Hpl2) = Inxn,  Hp(2) £ HI(27"). 31)

This in turn means that the synthesis polyphase matrix is
also lossless from the sufficient PR condition Eq. (9).

In the time domain, this condition is shown to be
Zh,(k)h,(Mn + k) = b,_né(n),
k

(32
Y 0. (K)gu(Mn k) = 8, _yd(n).

k

We now recall the MSE equation (30) and notc the
orthonormaility condition in Eq. (32). Then the MS
quantization error reduces 10 a rather simple form

2 | R
Uyq = M ; 0"'52 ' (33)
sinoe 3, g7 ()= 1.

For the two-band(M = 2} orthonormal FB, we select #,
(2} an N-tap FIR filler{N = cven) and then choose
Hi(z) = z7W-NgH(—27Y) «= hy(n

t(z) of ) 1(n) )
= (=1)""he{N — | — n)

to satisfy orthonormal requirements. Then the synthesis
filters are given hy

Gof2) = = M-VHy(zY) = go(n) = ho(N = 1 =n),
Gi(z) =z VH Y <= g{n)=h(N~1~n)

B. Biorthogonal filter Bank

The two-band biorthogonal FB[2][4] is a generalization
of thc orthonormal FB. This structurc permits linear
phase FIR PR filters in the two-channel casc-a feature
not possible with orthonormal constraints. Although
uncqual length biorthogonal PR FB is possible, we con-
sider only cqual length case for comparison with the
orthenormal structure.

For the equal length analysis/synthesis FB, we consider
the causal analysis filters, symmeteic Hy(z) and anti-
symmetric #,(2) of cqual kngth L=cven. Then the perfect
reconstruction can be achieved by choosing the synthesis
filters by
Go(z) = Hi(=2) <= go(n) = (~1)"h(n),

(36)
Gi(z) = ~Ho(~2) = gi{n) = (=) hq(n).
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Then Eq. (36) implies the equal lenglh analysis/synlhesis
fillers and the causal synthesis filters with a symmetric G,
(2} ang a antisymmetric G,(2).

The biorthogonal perfect reconstruction is satisfied by

Y_hik)alk—(2n+1)) = &n—no)
&

S hdk)gsk - (n+1) = 0 fori#;

(37)

wherc g; (n) 2 g;(—n) and n, is some delay. We note
that no simplification in MSE Eq. (30) is possible with
biorthogonal FB case and the MS quantization error
equation remains same as Eq. (30).

Our design problem is now 1o find the oplimal PR filter
bank and bits allocaled to each channel which minimizes
Eq. (33) for the orhonermal FB structure and Eq. (30)
for the Biorthogonal FB structure.

V. Design Example and Performance Analysis

In this section, we have dcveloped specific design
examples for lwo diflferent classes of fifter banks, the
orthonormal and biorthogonal two-channel case with
equal length & tap filter banks. Our design problem is
now to find the oplimal PR filter bank and bit allocation
which minimizes the output MSE for a given total bit
allocation. We¢ assumc that cach quantizer takes only
integer bits and the high frequency components of the
subband signal gets at least 1 bit. Otherwise there is no
way lo recover high frequency component of input signal
al the oulput.

Our optimization algonthm tests for all possible bit
combinations for the given average bit rate R bits/
sample, calculates the optimal filter coefficients and MSE.
It chooses the one with the minimum MSE among them.
This is implemented by using IMSL FORTRAN Library
(DNCONF). This package solves a general nonlincar
constraincd minimization problem using the successive
quadratic programming algorithm and a finite diffcrence

gradien(.

A. Orthonormal filter bank

The simulation results for the orthonormal FB are
shown in Table 1, 2 for the inpul correlation p=0.95,
0.75, 0.55.

Tabl2 1 lists the optimum integer bits allocated (o cach
channel R, R, and the calculations of the output MSE
based on Eq. (33). This table shows that as the average

bit rate R bit/sample and input correlation p gets larger,
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Table 1. MSE for orthonormal FB at p =0.95, 0.75, 0.55 with

respect o R
R | Ry | R |MSE(p=095) MSE(p=0.75)|MSE{p =0.55)
O 0.020833 0.031812 0.038332
sl 20 0.005489 0.006716 0.008162
21311 0.001646 0.003187 0.004995
2504 |1 0.000687 0.002305 0.004202
351 0.000447 0.002084 0.004004

Table 2. Optimum orthonormal filter coefficients Ay (n) at p =
09s

R | holO) | A1) | ho(2) | ho(D) ho(4) | ho(5)

I |0.31379 |0.67552 | 0.60153 | —0.07663 | —0.23088| 0.11326
1.5 |0.38532 ) 0.74741 | 0.48268 | —0.08832| —0.14452) 0.05135
2 [0.38568 | 0.79648 | 0.42752 | —0.14086| —0.10669 0.05I6f£
2.5 10.38567 ] 0.79628 | 0.42813 | —0.14085| —0.10669| 0.05167
3 10.38585|0.79633 | 0.42787 | —0.14089| — 0.10661 | 0.051 66

the output MSE is getting smaller.

The corresponding optimal filter coefficients of Ji ()
for p=0.95 are shown in Tablc 2. As secn from the
tables, the optimal filter coefficients are quite insensilive
to changes in average bit rate R{and also to p) although
the outpul MSE is highly dependent on them.

The magnitude reponse of analysis filters Hy(2), Hi(2)
corresponding 10 the designed filter coefficents of
p=095, 0.75 are shown in figure 6(a), (b) respectivety for
the given average bit rate R=3.

Hofe)] Hy(e)]
1 —
(a) p=0.95
0 S— : — S
0.0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency
15 ......... asitaia
{Ho(e?)| [Hy{e’)]
1 —
" (b) p=0.75
(R e T T Y
ag.0 0.1 0.2 0.3 04 0.5

Normalized Frequency

Figure 6. Magnitude response M (2), H,(2) of orthonormal FB
al R=3}
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From the figures, we clearly see the effect of input cor-
relation change in magnitude responses. As the input cor-
relation p decreases, the stopband ripples of each filter
and the spillover from one band to another are getting
larger. Consequently, more aliasing is introduced between
the channels which yields larger MSE at the outlpul. As
expected, the magnitude reponses show the mirror image

property at o =xr/2.

B. Biorthogonal filter bank

The optimal designs for the equal length analysis/syn-
thesis biorthogonal FB based on the minimization of Eq.
(30) are shown in Table 3 and 4 for the case of input cor-
relation p =0.95, 0.75, 0.55.

Table 3. MSE for biorthogonat FB al p =0.95, 0.75, 0.55 with
respect 1o R
R [ Ry R |MSE(p=0.95) | MSE(p=0.75}| Ry | R, | MSE(p=0.55)
| [ i1 0012717 0.016786 L]t 0038332
L5211 0.00376 0.0060%0 201 0.008162
20371 0.00133t 0.003136 31 0.004995
2554 |1 0.00004) 0.001522 3|2 0.001999*
315 |1 0.000334 0.000784 42 0001270°

Table 4. Optimum biorthogonal filter coefficients /g (n), & ()

at p=0.95
R| holD) () | 2o(2) | R (O (1) | (2
1 | 025137 |—0.68345/0.92910 | 0.08586] —0.23346|0.68665
L.5[ 0.09364 |—0.46631|0.94227| 0.04160|-0.20717(0.62902
2 [~0.00552]~0.26864| 0.93553 | —0.00345|—0.16801 | 0.58269
2.5|=0.03304/—0.13232|0.92970 | ~0.00328] —0.13165|0.55537
3 |-0.03332]-0.07694|0.92863 | —0.00495 — 0.1 1440| 0. 54612

From the tables, we sce that the optimal filter cocfli-
cients are very sensitive to changes both in the average bit

rate R and in the input correlation p.

Figure 7 shows the magnitude frequency responses

corresponds to input correlation p=0.95, 0.75 and R=3.

1.8
I—
|Ho(e*)] |H1 (e2)....
14
(a) p = 0.95
0 =7 T T T
0.0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency

m:ng

1.8

H ()

(b) p=075

T ¥ U
0.2 0.3 0.4

Normalized Frequency

0.5

Figure 7. Magnitude response },(2), f, (2) of biorthogonal FB
at R=3

We observe the significant overlaps in the stopband
and the spillover between Hy(z) and H,(2) as the input
correlation decreases. These cause the increasement of the
output MSE. Unlike the orlthonormal case, the low and
high-pass filters of biorthogonal analysis FB are not
mirrors of cach other, but they are linear phase.

C. Performance comparison

Optimum orthonormal and biorthogonal FB structures
for the two channel case have been developed and
demonstrated with AR(1) gaussian input signal with dif-
ferent input correlations.

Table 1 and 3 demonstrate thal the biorthogonal FB is
superior to the orthonormal counterpart in terms of output
MS quantization error. Figure 8 compares the perform-
ance of orthonormal FB and biorthogonal FB in terms of
output MSE.

—o—o— Orthonormal FB
..... o-g- DBiorthogonal FB

R bits/sample

Figure 8. MSE comparison for orthonormal and biorthogonal
FB for p=095.

Table 2 and 4 shows that the orthonormal filter
coclficients are insensitive fo changes in input signal stat-
istics. Hence the orthonormal FB is robust. On the other
hand, the biorthogonal filter is very sensitive to these




parameters which in turn suggest a possible adaplive

biarthogonal structure.

VI. Summary and Conclusions

We have presentod a methodology for modelling, analysis
for the floating-point quantization effecls in general Af
band subband codec. This approach also scts up a
quantization error measure which is 1o bc minimized to
design the optimum subband codec:subband filter bank
and the quantizer.

Optimum orthonormal and bierthogonal FB structure
have been designed for the 2 channel case. For the 2
channcl equal-length filters, it turns out that the bio-
rthogonal FB is superior to the orthonormal FB in terms
of oulput MSE. However the orthonormal FB provides a
robusl system to changes in input signal statistics while
the biorthogonal FB is very scasitive to these paramelers.
This suggesls an adaptive biorthogonal structure thal
reviscs the bit allocation based on the measured changes
in input correlation p. These changes are transmitted to
the recciver as side informalion. We nole that similar
arguements were made for fixed-point quantization casc
in Ref. [8].
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