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Abstract— Recently we proposed a new set of constitutive equation that can describe the interfacial contributions on the
theological properties of immiscible polymer blends with complex interfaces and successfully compared with dynamic ex-
periments[1]. As Takahashi et. al. [2] have noticed, the domain structures remain unchanged under oscillatory flows with
appropriate frequency and strain. So, it is relatively easy to consider such cases. Here we would like to explore it further to
obtain the compact expressions for the steady shear properties. Furthermore we would like to compare them with ex-
perimental observations for the understanding of the morphological differences in the interfaces. In case of the shear flow,
the domains can be deformed, ruptured, and aggregated due to the competition of flow and interfacial tension. That is why
we proposed a phenomenological scheme to take into account such effects previously[1]. Three different characteristics of
the interfaces have been successfully demonstrated as a conjunction with theoretical parameters and excess properties due
to the interfaces.
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1. Theory where 1, 6, N and ¢ is the viscosity, shear stress, normal stress

difference and volume fraction of inclusion phase, respectively.

First of all, let us briefly explain the constitutive equation The subscript b,m,i and ex indicate the blend,matrix,inclusion
proposed previously. If two-phase system with complex in- phase and excess property due to the interfaces, respectively.
terfaces is shown in Fig. 1, then the total stress tensor can be First term is the matrix contribution and second is due to the

expressed as a sum of three terms:

Mo 1, 6 (= Tm)

¢ + Ocx
M 10 (n+Mm) * Om

N i—Nm
No 146 NimNe)

¢+ NEX
N 10 (N;+Ng) '~ N

difference of properties between matrix and inclusion. There-
fore, if we deal with polymer blends with the same rheological
(0 properties, then it will vanish. However, when we deal with po-
lymer blends with different properties, it is very important to
(2) choose a proper mixing rule in the first place. The linear mix-
ing rule has been adopted by several authors[2,3], but there is

no rigorous logical background on that. Instead, we proposed a

'To whom all correspondence should be addressed

different mixing rule in the previous communication[1] which
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can provide us a proper limit in case of dilute concentration of
inclusions. The details can be found in the previous paper.
However, in the previous communication, only equation (1)
was proposed, but here we assume the similar mixing rule for
the first normal stress difference as equation (2) as well
without any further investigations in order to consider the ma-
terials with normal stress difference. However, the interfacial
contribution on the normal stress difference is so dominated in
the range of experiment, first two terms in equation (2) can be
neglected in most cases. The third term is the excess shear
stress and normal stress difference due to the interfaces that
can be separately obtained from the theoretical consideration[1].
In order to do that, it is necessary to solve the time evolution e-
quations for Q and q;. These are defined in Fig. 1 as the in-
terfacial area per unit volume and the anisotropy of such quan-
tity. They are solely defined as mathematical quantities of the
interface. The first question is how to obtain them and whether
it is possible to have a steady state solution of such quantities.
If so, they must be results of balance between shear flow de-
formations and interfacial relaxations. Once we have such quan-
tities, it is necessary to have a relationship between these and
excess stress tensors. Here we are going to use the linear theo-

ry proposed by Doi and Ohta [4].
O, jj = ~OWjj @)

with G,,, the excess shear stress tensor and o, the interfacial ten-
sion.
If we apply a 3-dimensional simple shear flow given by the

velocity gradient tensor

g = (V) dS{nm — (1/3)8} : Anisotropy
O=(1/ V)I ds : Interfacial area

Fig. 1. A concentrated mixture of two immiscible fluids with the
complex interfaces.
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di= 78,8 (4)

to the previously proposed theory[1] and define

7=yt (5)

A=A (6)
Y

P2=2(P?+P2+P2+P,P,) x Q? (8)

Here, T represents the strain and A is corresponding to the de-
gree of total relaxation as defined by the proposed theory[1].
Then, the time evolution equations for 3-D simple shear flow

on 1-2 plane will be:

dQ

P —P;Q—-AuQ? - AvP? )
% =2P,P,+ -?)—P3 +A(u-1)P,Q (10)
%=2P2P3—%P3+A(u—1)PzQ (11
%=2P§—Pl—%+A(u—l)P3Q (12)

Here, i and v are model parameters which are related to the
coalesence and break-up relaxation in the proposed theory[1].
To combine eq (10) and (11), it is easily seen that P, always
equal to - 2 times of P, at any time. Therefore we do not need
to solve for P,, and just drop the eq (11). At steady state, e-
quations for Q, P,, and P; will be:

2P3P1+%P3=A( 1-pP,Q (13)
2P32—P,—%=A(1—ﬂ)P3Q (14)
—P,=AuQ+2Av(3P2+P?)Q (15)

By combining (13) and (14), we come up with a relationship
between P, and Ps.

3P2+P,+2P2=0 (16)

To climinate Q and P;, we end up with a P, equation that
looks like:

18VP+ (3+3u~2v)P,+2u=0 amn

Once we have P, it is easy to calculate P; and Q and there-
fore we can evaluate excess stress tensor contribution by

equation (3). For simple shear flow, it looks like:
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It is possible to obtain an explicit expression for P, from e-
quation (17) in principle, but it is rather complicated. Instead, it
is rather convenient to introduce the ratio of excess normal

stress difference to the excess shear stress such as

k=&= (41=92) =3& (20)
Oex d12 P,

With the aid of this quantity, we can obtain the following

expressions:
—K2
P=— 21
T 3(K2+6) @D
nmi/
Ox=12——+—— 22
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v can be is related to k and [ as followings:
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If we put these two quantities into eq (1) and (2), then the
shear properties of blends are established like (25) and (26).

T 6 (1Mi—Tm) 12

LR 25
Tm 10 (M4 7m) +/1(1—;1)(6+k2)2 @)
Ny .. 6 (Ni-Nu) 120wk 26)
Nm 10 (N;+Nm) = NaA(1-p)(6+k?)?2

It is nothing but two parameters fitting with «, A(1-y). The
original theory is dealing with three different kinds of
phenomenological interfacial relaxations that can be related
with A, L, and v. Here we only have two parameters and these
two are enough to describe the interfacial relaxations. In fact,
these two quantities will be used to qualify the characteristics
of the interfaces later. Mathematically, we can put u=0 and it
does not make any qualitative difference in the excess rheo-
logical properties. If we recall the physical meaning of three di-
mensionless parameters concerning the interfacial relaxation
from the previous paper [1], A comes from the total intensity
of such interfacial relaxation and p is from the contribution of
size relaxation and v is from the contribution of break-up and
shape relaxation. Therefore near steady state, the average size
of the domains is almost fixed so that the size relaxation term
i does not make any influence any more. Therefore, in order
to explain the steady properties, L and A are not enough but x
and A(1-p) should be included in the first place. It is a fun-
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damental shortage of the original Doi and Ohta model[4] to
neglect v term(or ¥ term) in the first place. Average domain
size so-called 'surface to volume equivalent diameter’, d can be
predicted if we simply assume the quasi-spherical domains, but
in the range of high shear rates, it does not have a significant
meaning since they are usually deformed a lot from the spher-
ical shape. The average domain size, d is represented by the fol-

lowing expression.

d= ok(k®+6) A(l-wa 27)
T ¥

One more thing which is worthy to be mentioned is that in
order to have a proper steady state solution, v should be larger
than 1.5 or x should be positive, and we can put u=0. It means
that even we neglect coalescence for some cases, it is im-
possible to ignore the break-up of inclusions in the first place.

We have also tried the other type of closure approximation
and corresponding nonlinear stress with g; as suggested by M.
Grmela and A. Ait-Kadi[5] in order to satisfy the requirement
of the compatibility of dynamics with thermodynamics. No
qualitative difference, however, was found as seen in the Ap-

pendix A.
2. Comparison with experiments

Experimental data was obtained for Polyacrylic acid solution
(hereafter called as PAAS) and Polydimethylsiloxane (hereafter
PDMS) blend with 20/80, 50/50 and 80/20 compositions. The
experimental procedure and the detailed data will be reported
in the separate communication[6] and here, we would like to
compare them with the theoretical expressions obtained above.
The rheological datas of pure component are shown in the Fig.
2. The parameters that have been used for the fitting are ta-
bulated in Table 1. For simplicity we put =0 then v are 1.502,
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Fig. 2. Rheological data of pure component(® ; PDMS, V/; PAAS ),
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Table 1. Model parameters of PAAS/PDMS blend for data fitting
Blend  20PAAS/80PDMS 50PAAS/50PDMS 80PAAS/20PDMS

o.(Pa) 771 3932 109
N.(Pa) 347 3775 4533

X 0.45 0.96 416
Yl/sec) 12.6 126 126
Na(Pas) 15.7 157 16.8
N,(Pa) 35 35 293
matrix  PDMS PDMS PAAS
Al 03801 0.126 0.0433
o(mN/m) 55.2 552 55.2

v 75102-1220)  1.64093-129u)  0.193(17.3-29.3p)

1.525, and 3.34 respectively.

2.1 20PAAS/80PDMS-Simple Interface

We compared the experimental data with model prediction of
20PAAS/80PDMS in Fig. 3. This blend exhibits a kind of
weak contribution of interfaces not only to shear stress but also
to the normal stress difference. It may be classified as a simple
interface case. The reason why we have very weak contribution
on shear stress is that we started from the very similar viscosity
materials with a relatively high relaxation of the interface. It is
confirmed by O(1) value of A shown in the Table 1. The normal
stress differences are not too high compared with the con-
tribution of pure components but a little underestimated. One
of the possible reason for the discrepancy is that the original
difference in normal stress differences of pure components is

too high.

2.2 SOPAAS/50PDMS-Viscous and Elastic Interface
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Fig. 3. Comparison experimental data with model prediction of
20PAAS/80PDMS(m; experimental viscosity, @ ;ex-
perimenta first normal stress difference

; theoret-
ical prediction).
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Fig. 4. Comparison experimental data with model prediction of
SOPAAS/SOPDMS(m ; experimental viscosity, @ ;ex-
perimenta first normal stress difference ; theoret-
ical prediction),

We compared the experimental data with model prediction of
50PAAS/50PDMS in Fig. 4. This blend shows a kind of strong
contribution of interface not only to shear stress but also to the
normal stress difference. The reason why we have very strong
contribution on shear stress is that even though we start from
very similar viscosity materials, a relatively weak relaxation of
the interfaces play a role. It is confirmed by lower vale of A
shown in the table. Thus it gives us very complex interfaces
that contributes not only to the shear stress but also to the nor-
mal stress difference. The normal stress differences are very
high compared with the contribution of pure components even
though it is a little underestimated. One of the possible reason
is the original difference in normal stress differences of pure
components is too high. Therefore we can call it a viscoelastic

interface.

2.3 80PAAS/20PDMS --Purely Elastic Interface

We compared the experimental data with model prediction
of 80PAAS/20PDMS in Fig. 5. This blend has a kind of weak
contribution of interface to shear stress but very strong to the
normal stress difference. The reason why we have very weak
contribution on shear stress is that we start from very similar
viscosity materials. The normal stress differences of blends
are too high compared with those of pure components and a
little overestimated. The possible reason is that a relatively
low relaxation of the interfaces contributes a lot that is con-
firmed by A value shown in the table. The original difference
in normal stress differences of pure components has some con-

tribution, too. So it can be classified as a purely elastic in-
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Fig. 5. Comparison experimental data with model prediction of
80PAAS/20PDMS(m ; viscosity, @ ;ex-
perimenta first normal stress difference ; theoret-
ical prediction).

experimental

terface case.

2.4 Other Experimental Data

PDMS/PB blends studied by Takahashi et. al. [2,7] can be
interpreted via same parameters and the results are sum-
marized in Table 2. We can clearly see the differences in the
properties of interface contribution on the rheological pro-
perties in blends. As seen in the PDMS90/PB10 blends, O(1)
value of M(1- W) means a simple interface. Other four cases
can be classified as viscous and elastic interfaces with re-
latively weak relaxations of interfaces. Same calculation for
Vinckier data for PDMS/PIB blends can be considered along
the same line and the results are in Table 3.[3]. Here we can
notice that 9:1 and 1:9 blends exhibit the simple interface
characteristics but 7:3 and 3:7 blends are the typical cases for
the purely elastic and viscous-elastic interfaces, respectively.
All 13 blends can be shown in Fig. 6 as k vs A(1—p). This

plot can be used for the determination of interfacial charac-

Table 2. Model parameters for other system; blend1(PDMS : PB),
blend2(PDMS : PI) (Evaluated at y=1/sec)

Blend blend1(9:1) blcnd1(7:3) blend1(5:5) blend1(7:3) blend1(5:5)
o.(Pa) 215 435 102 34.7 32

6.(Pa) 107 107 97.8 97.8 60

matrix PDMS PDMS PB PB -PI

N.(Pa) 249 104 198 72.6 615
N.(Pa) 224 224 035 0.35 0.08

K 1.16 2.39 1.94 209 1.92
AM1p) 1.06 0.207 0.109 0.283 0.24
Interface  simple elastic elastic elastic elastic
Properties viscous  viscous  viscous  viscous
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Table 3. Model parameters for PDMS:PIB system .
i (Evaluated at y=1/sec)

Blend 90/10 70/30 30/70 10/90
G..(Pa) 16.8 313 60.3 154
G.(Pa) 200 200 86.5 86.5
matrix PDMS PDMS PIB PIB
N..(Pa) 46.8 229 99.8 13.2
N,(Pa) 10 10 0.133 0.133
X 2.78 7.31 1.66 0.854
M1-p) 0.758 0.022 0.225 1.49
Interface simple elastic elastic elastic
Properties viscous
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Fig. 6. Map of model parameters between «k and A(1-p).

teristics.
3. Conclusions

Three different kinds of interfacial contributions on the shear
stress and normal stress difference of polymer blend are well
explained along the line of the previously proposed theory[1].
First of all, very simple analytic expressions and the method of
obtaining the relevant parameters are demonstrated to be easily
compared with experiments. Three different characteristics can
be revealed by the estimation of the phenomenological values
from experimental data. Specifically, 20PAAS/SOPDMS blend
has a weak viscous and elastic interface classified as a simple
interface, but SOPAAS/SOPDMS has a viscous and elastic in-
terface. 20PDMS/80PAAS shows a purely elastic interface.
Nonlinear theory for the interfacial contribution was tried but
no qualitative difference was observed. It can be expanded to
the case of extensional flow and for the reference we just put
them in Appendix B. for further comparison with experiments

since we do not have any experimental data right now.
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Symbols

M : Viscosity of inclusion phase
M. : Viscosity of matrix phase
M, : Viscosity of blend

N; : First normal stress difference of inclusion phase

=z
E]

: First normal stress difference of matrix phase
N, : First pormal stress difference of blend
: Volume fraction

: Shear stress

a a ©

a
B

: Excess shear stress due to interface

: Excess first normal stress difference due to interface

)
5

: Shear rate

: Shear strain

: Interfacial tension

: No/Oox

: Degree of total relaxation
: Coalescence relaxation

: Break-up relaxation

: Drop size

mra < E P R R A <.Z

: Extensional rate

: Extensional viscosity
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Appendix A

In order to accommodate the suggestion of M. Grmela, the

extra stress tensor due to the interface will be calculated by

60 6o
G =~ 0~ oy % B 5 Gl i . (AD
In this case, we should use a different closure for 4th order ten-
sor so that the governing equations for g; are slightly different

from equations (10), (11) and (12)

dp 2

d_; =3P, P;+ TPy +Au-1)P,Q (A2)
dP. 4

d_; =3P,y — Py + A - 1)PQ (A3)
dp 1

d_; =3P} P~ - +A(U-DPQ (A4)

It is possible to define the ratio of excess normal stress to the

excess shear stress as before and final results will be given by

M _1,.6 M=1) 12 (36+128-K)

=1+ A5
FRAR TR A T R
Ny, 6 Ni-Nw) . 126 (36+12—«)
Nm 10 (N+Np) ' NaA(l—p)  (6+0)

(A6)

The surface to volume equivalent diameter can be expressed as

_ 60K(2+6) A1 yar |
d= AT
(12 - Kz) nmj/ (AT

As you see, there is no qualitative difference noticed except

some quantitative change depending on the ratio k.
Appendix B

Three-dimensional extensional flow given by d; = £(3,5;,— 1/2
8.0,—1/28:8;) is applied to the immiscible polymer blend,
then the following equations can be easily obtained after de-

fining a few parameters and variables as before.

A= (B1)
mé
T=é (B2)
= -4
4=duw P=7 (B3)
40 __ 3 auori 3 Ave
ar >4 ApQ > Avgq (B4)
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Here, € represents the extensional rate

It is pretty straightforward to see that q22=q33=—%q11. By

combining (B4) and (BS5) into p - equation will give us
27vp* —9vp? + (9 +9u — 6V)p2 — 6up — 4 =0 (B6)

Once p is obtained, Q and q can be given as

— 2y 2
Q= TREAEIP) o po - LMD ()

Therefore,
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Me _y, 6 (=) 1 (B8)
3ﬂm 10 (ni+nm) ZVMI 32 H )

3vp?

Here, p=0 will give us a simple excess extensional viscosity
with one combined parameter VA. In that case, the domain size

of inclusion may be
d= __Ma_/l (B9)
v+ @2 —121)7] ™

It will be very nice to be compared with experimental data if a-

vailable.
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