The High temperature stability limit of talc, $Mg_3Si_4O_{10}(OH)_2$

활석 $Mg_3Si_4O_{10}(OH)_2$의 고온 안정영역에 관한 실험적 연구

  • 조동수 (고려대학교 지구환경과학과) ;
  • 김형식 (고려대학교 지구환경과학과)
  • Published : 1997.10.01

Abstract

In the system $MgO-SiO_2-H_2O$, Talc[$Mg_3Si_4O_{10}(OH)_2$] has been synthesized hydrothermally at 200 MPa, $600^{\circ}C$ from the oxide mixture of the bulk composition of talc. The oxide mixture of the bulk composition of anthophyllite$[Mg_7Si_8O_{22}(OH)2]$ converted to talc, enstatite $(MgSiO_3)$, quartz at 200 MPa, $750^{\circ}C$ with excess of $H_2O$. In low to medium pressure metramorphism, enstatite-talc assemblage is metastable relative to anthophyllite with the reaction talc + 4 enstatite=anthophyllite (Greenwood, 1963). The high temperature stability of talc is bounded with the dehydration reaction to anthophyllite rather than that to enstatite(Greenwood, 1963; Chernosky et al., 1985). Therefore our experiment result assemblage, enstatite-talc-quatz at 200 MPa, $750^{\circ}C$ from oxide mixture of bulk compostion of anthophyllite is metastable assemblage. The hydrothermal experiment performed at 41 to 243 MPa, 680 to $760^{\circ}C$ with the starting material composed of synthetic talc, enstatite and quartz. Talc or enstatite grows during the runs and no extra phases including anthophyllite nucleated. Based on the increase or decrease of the each phase from run products, one of the possible reactions is talc=3 enstatite+quartz+H_2O$. The reversal bracket of the reaction is 699 to $700^{\circ}C$ at 100 MPa. Talc is stable up to $740^{\circ}C$ at 200 MPa and enstatite grow at $680^{\circ}C$, 40 MPa and at $760^{\circ}C$, 250 MPa. Though the high temperature limit of talc around 200 MPa is bounded thermodynamically by the reaction, 7 talc=3 anthophyllite+4 quartz+4 H_2O$, talc persisted throughout the previous reaction up to the reaction, talc=3 enstatite+quartz+$H_2O$.

활석[$Mg_3Si_4O_{10}(OH)_2$]은 그 성분의 산화물을 200 MPa, $600^{\circ}C$에서 열수 반응시켜 쉽게 합성할 수 있다. 엔소필라이트[$Mg_3Si_4O_{10}(OH)_2$]는 그 성분 산화물을 200 MPa, $750^{\circ}C$에서 반응시키면 활석, 엔스타타이트($MgSiO_3$), 석영이 생성된다. 저압 내지 중압의 변성작용에서 엔스타타이트와 활석의 공새은 활석 + 4 엔스타타이트=엔소필라이트의 반응(Greenwood, 1963)에 의해 준 안정한 광물조합이며 엔소필라이트가 안정하다. 그러므로 저압 내기 중압 환경에서 활석의 고온한계는 엔스타타이트와 석영이 형성되는 반응보다 엔소필라이트 석영이 형성되는 반응으로 한정된다(Greenwood, 1963; Chernosky et al., 1985). 그러나 위의 200 MPa, $750^{\circ}C$ 열수반응에서 활석과 엔스타타이트와 석영의 공생은 엔소필라이트의 형성과 안정성에 대하여 의문을 제기하게 한다. 본 연구는 열역학적으로 계산되어 얻어진 7 활석=3 엔소필라이트 + 4 석영 + 4 $H_2O$ 반응 온도 보다 고온에서 활석의 안정성에 대하여 실험하였다. 열수 반응은 41-243 MPa 680-$760^{\circ}C$에서 실시하였다. 화학반응 활석=3 엔스타타이트 + 석영 + $H_2O$는 100MPa 699$^{\circ}C$]<710에서 평형을 이루고, 200 MPa, $740^{\circ}C$에서는 활석이 안정하고, 40 MPa, $680^{\circ}C$와 250 MPa, $760^{\circ}C$에서는 엔스타타이트가 안정하다.

Keywords

References

  1. Can. Min. v.29 Thermobarometry using multiequilibrium calculatons: a new technique with petrologic applications Berman, R.G.
  2. J. Petrol. v.29 Internally-consistent thermodynamic data for stoichiometric minerals in the system Na₂O-K₂O-CaO-MgO-FeO-Fe₂O₃-Al₂O₃-SiO₂-TiO₂-H₂O-CO₂. Berman, R.G.
  3. J. Petrol. v.27 Derivation of internally consistent thermodynamic properties by the technique of mathematical programming, a review with application to the systme MgO-SiO₂-H₂O. Berman, R.G.;Engi, M.;Greenwood, H.J.;Brown, T.H.
  4. Geol. Soc. Am. Bull. v.60 The system MgO-SiO₂-H₂O. Bowen, N.L.;Tuttle, O.F.
  5. Petrogenesis of Metamorphic rocks, 6th edition. Bucher, K.;Frey, M.
  6. Am. Min. v.61 The stability field of anthophyllite-A reevaluation based on new experimental data Chernosky, J.V., Jr.
  7. Am. Min. v.64 The stability of anthophyllite in the presence of quartz. Chernosky, J.V., Jr.;Autio, L.K.
  8. Am. Min. v.70 Equilibria in the system MgO-SiO₂-H₂O: experimental determination of stability of Mg-an-thophyllite Chernosky, J.V., Jr.;Day, H.W.;Caruso, L.J.
  9. Am. Min. v.80 Phlogopite stability in the silica-saturated portion of the system KAIO₂-MgO-SiO₂-H₂O: New data and a reappraisal of phase relations to 1.5Gpa. Clemens, J.D.
  10. Am. Min. v.64 The stability field of anthophyllite: the effect of experimental uncertainty on permissible phase diagram topologies. Day, H.W.;Halbach, H.
  11. Am. Min. v.70 Equilibria in the system MgO-SiO₂-H₂O: a thermodynamic analysis. Day, H.W.;chernosky, J.V.;Kumin, H.J.
  12. Sheet silicates. v.3 Rockforming minerals Deer, W.A.;Howie, R.A.;Zussman, J.
  13. Hydrous phyllosilicates. Reviews in Mineralogy. Min. Soc. Am. v.19 Talc, Pyrophyllite and related minearls. Evan, B.W.;Guggenheim, S.;Bailey, S.W.(ed.)
  14. Am. J. Sci. v.260 On the relative stabilityh of talc, anthophyllite and enstatite. Fyfe, W.S.
  15. Orogenic andesites and plate tectonics. Gill, J.
  16. J. Petrol. v.4 The synthesis and stability field of anthophyllite. Greenwood, H.J.
  17. Am. J. Sci. v.270 Anthophyllite . Corrections and comments on its stability. Greenwood, H.J.
  18. Thermodynamics and transport properties and computer programs for vapor and liquid states of water in SI units. Harr, C.;Gallagher, J.S.;Kell, G.s.
  19. Am. J. Sci. v.277 Mineral equilibria in the MgO-SiO₂-H₂O system: Ⅱ talc-antigorite-forsterite-anthophyllite-enstatite stability relations Hemley, J.J.;Montoya, J.W.;shaw, D.R.;Luce, R.W.
  20. Am. J. Sci. v.264 Phase relations in the system MgO-SiO₂-H₂O at high temperatures and pressures. Kithara, S.;Takenouchi, s;Kennedy, G.C.
  21. Am. Min. v.80 The high-pressure stability of talc and 10 A phase: Potential storage sites for H₂O in subduction zoens Pawley, A.R.;Wood, B.J.
  22. Geol. Surv. Bull. Thermodynamic properties of Minerals and related substances at 298.15K and 1Bar(105 Pascals) Pressure and at Higher Temperature. Robie, R.A.;Hemingway, B.S.;Fisher, J.R.
  23. J. Geol. v.79 Experimental data for reaction in siliceous marbles. Skippen, G.B.
  24. Chemical kinetics and dynamics. Steinfeld, J.I.;Francisco, J.S.;Hase, W.L.
  25. Am. J. Sci. v.270 Comments on the thermodynamic constants and hydrothermal stability relations of anthophyllite. Zen, E-An.