Alteraation of Gonadotropin-releasing Hormone and Luteinizing Hormone ${\beta}$-Subunit mRNA Levels in Neonatally Estrogenized Female Rats

  • Song, Eun-Sup (Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University) ;
  • Kang, Sang-Soo (Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University) ;
  • Cho, Se-Hyung (Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University) ;
  • Choe, Young S. (Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University) ;
  • Geum, Dong-Ho (Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University) ;
  • Choi, Don-Chan (Department of Life Science, College of Natural Sciences, Yongin University) ;
  • Kim, Kyung-Jin (Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University)
  • 발행 : 1997.12.01

초록

Treatment of newborn female rats with gonadal steroids induces permanent sterility in adulthood. We investigated the alteration in expression patterns of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) in neonatally estrogenized sterile rats (ESR). Newborn female rats received daily injections of 17${\beta}$-estradiol (E, 10 ${\mu}$g) from the day of birth (day 1) to postnatal day 5. Controls were subjected to vehicles over the same period. All animals were sacrificed on week 7 after birth. Hypothalamic GnRH mANA levels were markedly higher in all ESR than in controls, while hypothalamic GnRH contents in ESR increased in proportion to the frequency of daily administration of E. However, both pituitary LH6 mRNA and serum LH levels were inversely decreased by the same treatment. The data indicate that neonatal exposure of E equally elevates the expression of GnRH gene, but reduces the secretion of GnRH, accordingly leading to attenuation of LH6 gene expression and circulating LH levels. The temporal effect of E and/or progesterone (P) on GnRH and LH6 mRNA levels was also examined in ESR. Newborn female rats were daily injected with E (10 ${\mu}$g) or vehicle for five successive days from day 1 and ovariectomized at week 5. They were implanted with E (235 ${\mu}$g/ml) two days prior to week 7, injected with P (1 mg) 42 h later, and sacrificed 7 h after P administration. In ovariectomized controls, hypothalamic GnRH mRNA levels were dropped to half by treatment of E and restored by subsequent treatment of P. The negative feedback action of E on GnRH mRNA levels observed in ovariectomized rats was completely blocked by neonatal exposure of E. The change in pituitary LH mRNA levels was similar to that in hypothalamic GnRH mRNA levels. Taken together, the results suggest that neonatal treatment of E alters the synthesis and release of GnRH in adulthood and furthermore blocks the negative feedback regulation of E which occurs normally after ovariectomy.

키워드