Antimicrobial Effect of Carbon Dioxide on Microorganisms

이산화탄소의 항균 효과

  • 홍석인 (한국식품개발연구원) ;
  • 변유량 (연세대학교 생명공학과 및 생물산업소재연구센터)
  • Published : 1997.12.01

Abstract

Corbon dioxide id effective for extending the shelf-life of perishable foods by retarding microbial growth. The overall effect of carbon dioxide is to increase both the lag phase and generation time of microorganisms. However, the role of carbon dioxide in affecting the growth and metabolism of any given microorganisms is not clear yet, although its inhibitory effect is generally found at moderate to high concentrations. Systematic studies of the effects of carbon dioxide on microorganisms are therefore warranted. It is also necessary to understand the role of carbon dioxide in the preservation of foods as well as the control by carbon dioxide of fermentations of biotechnological importance. In this review, the antimicrobial effect of carbon dioxide on microorganisms is investigated in terms of its gas and solution properties, inhibition of microbial growth and specific metabolic processes, perturbation of membrane structure.

Keywords

References

  1. J. Appl. Bacteriol. v.48 Effect of high concent-rations of carbon dioxide on the growth of Pseuda-monas fragi, Bacillus cereus and Streptococcus cre-moris Enfors, S. O.;Molin, G.
  2. J. Soc. Chem. Ind. v.51 The inhibition of the growth of me-at-attacking fungi by carbon dioxide Tomkins, R G
  3. J. Bacteriol. v.81 Moisture requ-irements of bacteria. Ⅳ. Influence of temperature and increased partial pressure of carbon dioxide on requi-rements of three species of bacteria Wodzinski, R. J.;Frazier, W. C.
  4. Carbon dioxide Quinn, E. L;Jones, C L.
  5. Psych-rotrophic microorganisms in spoilage and pathoge-nicity The effect of different gases on the activity of microorganisms Enfors, S. O.;Molin, G;Robert, T. A.(ed.);Hobbs, G.(ed.);Christian, J. H. B.(ed.);Skovgaard, N.(ed.)
  6. Biphysics and physiology of carbon dioxide Chemical reactions of CO₂ in water Knoche, W.;Bauer, C.(ed.);Gros, G.(ed.);Bartels, H.(ed.)
  7. Mechanisms of action of food preservation procedures Modified atmosphere Jones, M. V.;Gould, G. W.(ed.)
  8. J. Appl. Bacteriol v.67 The inhibition by CO₂of the growth and metabolism of microorganisms Dixon, N. M.;Kell, D. B.
  9. Psychro-trophic microorganisms in spoilage and pathogeni-city The influence of atmospheres conta-ining elevated levels of CO₂on the growth of psych-rotorphic organisms in meat and poultry Silliker, J. H.;Roberts, T. A.(ed.);Hobbs, G.(ed.);Christian, J. H. B.(ed.);Skovgaard, N.(ed.)
  10. J. Physiol v.268 Human erythrocyte anion permeabi-lities measured under conditions of net charge transfer Hunter, M. J.
  11. J Bacteriol. v.150 Outer mem-brane protein P of Pseudomanas aeruginosa : regu-lation by phosphate deficiency and formation of small anion selective channels in lipid bilayer membranes Hancock, R. e. W.;Poole, K.;Benz, R.
  12. J. Food Protect. v.48 A review of effects of carbon dioxide on microbial gro-wth and food quality Daniels, J. A.;Krishnamurthi, R;Rizvi, S. S
  13. Enzyme Microb. Technol. v.4 Effect of carbon dioxide on yeast growth and fermentation Jones, R. P.;Greenfield, P. F.
  14. J. Gen. Physiol. v.44 A model repre-senting a physiological role of CO₂at the cell mem-brane Sears, D. F.;Eisenberg, R. M.
  15. J. Appl. Bacteriol. v.45 The influence of high concentrations of carbon dioxide on the germination of bacterial spores Enfors, S. O.;Molin, G.
  16. Food Mic-robiol. v.12 Growth of psychrotrophic foodborne pathogens in a solid surface model system under the influence of carbon dioxide and oxygen Bennik, M. H. J.;Smid, E. J.;Rombouts, F. M.;Gornis, L. G. M.
  17. Food Technol. v.34 Microbiological con-siderations in controlled-atmosphere storage of meats Silliker, J H;Wolfe, S. K
  18. Eur J. Appl. Microbiol. Biote-chnol. v.18 The resistance to carbon dioxide of some food related bacteria Molin, G
  19. Int. J. Food Microbial. v.1 The effect of carbon dioxide on bacterial growth and on uptake processes in bacterial membrane vesicles Eklund, T.
  20. Shokuhin Eiseigaku Zasshi v.34 Ef-fect of carbon dioxide, oxygen, and their gas mixture on the growth of some food-borne pathogens and spotlage bacteria in modified atmosphere package of food Ogihara, H.;Kanie, M.;Yano, N.;Haruta, M.
  21. J. Food Sci. v.40 Influence of carbon dio-xide on the metabolism of Pseudomonas aeruginosa King, A D;Nagel, C W.
  22. Can. J. Microbiol v.31 Effect of carbon dioxide on growth of Pse-udomonas putida ATCC 11172 on asparagine, citrate, glucose and lactate in batch and continuous culture Molin, G
  23. Arch Mik-robiol. v.66 Effect of pH and CO₂ concentration changes on lipids and fatty acids of Saccharomyces cerevisiae Castelli, A.;Litterru, G. P.;Barbaresi, G.
  24. Proc. Nat. Acad. Sci. USA v.71 Homeoviscous adaptation-a homeostatic process that regulates the viscosity of membrane lipi-ds in Escherichia coli Sinensky, M.
  25. J Gen. Microbiol v.89 Effect of growth temperature on the lipids of Pseudomonas fluorescence Gill, C. O.
  26. Agric. Biol. Chem v.39 Effects of cultural conditions on the cel-lular fatty acid composition of Lactobacillus heterohi-ochii, an alcoholphilic bacterium Uchida, K
  27. J. Food Protect. v.58 Gas chromatographic analysis of cellular fatty acids inthe identification of foodborne bacteria Wauthoz, P.;El Liow, M.;Decallonne, J.
  28. Int. J. Food Microbiol. v.6 The effect of carbon dioxide on growth and extracellular enzyme production by Pseudomanas fluor escens B52 Rowe, M. T.
  29. Biochem. J. v.76 Ef-fects of carbon dioxide on the oxdation of succinate and reduced diphosphopyridine nucleotide by Ricinus mitochondria Bendall, D. S;Ranson, S L.;Walker, D. A.
  30. Appl. Environ. Microbiol. v.39 Effect of carbon dioxide on the growth of meat spoilage bacteria Gill, C O;Tan, K H.
  31. Food Technol. v.34 Use of CO and CO₂enriched atmospheres for meats, fish and produce Wolfe, S. K.
  32. Meat Sci v.7 Physiological basis of CO₂lnhibinon of a meat spollage bacterium, Pseudomonas fluorescens Tan, K. H.;Gill, C. O.
  33. J. Bioenerg. v.7 Perturbation of membrane fluidity Lenaz, G.;Curatola, G.;Mascottl, L.
  34. Molecular Pharmacology v.9 The pressure reversal of anaesthesia and the critical volume hypothesis Miller, K W;Paton, W. B. M.;Smith, R. A.;Smith, E. B.
  35. Fed. Proc. v.39 Membrane and cellular action of ana-esthetic agents Roth, S. H.
  36. Plant Physiol. v.49 Induced changes in the permeability of plant cell membranes to water Glinka, Z.;Reinhold, L.
  37. Na-ture v.262 Model for action of local anesthetics Lee, A. G.
  38. Bio-chim. Acta v.352 Activation of the β-galactosidasc transport system in Escherichia coli ML-308 by n-alkanols: modification of lipid-protein interaction by a change in bilayer fluidity Sullivan, K. H.;Jan, M. K.;Koch, A L.
  39. Biochem. Biophys. Res. Comm. v.126 osmotic stress drastically inhibits active transport of carbohy-drates by Escherichia coli Roth, W. G.;Leckie, M. P.;Dietzler, D. N.
  40. J. Gen. Microbiol. v.133 The roles of osmotic stress and water activity in the inhibition of growth, glycolysis and glucose phosphotransferase system of Clostridium pasteurianum Walter, R. P.;Morris, J G;Kell, D. B
  41. J. Theroetical Biology v.90 Presumed carbaminoprotein equilibria and free energy exchanges in reversible carbon dioxide narcosis of cytoplasm Fox, D. L.
  42. Acta v.265 Can fluorescent pro-bes tell us anyting about membranes? Radda, G A.;Vanderkooi, J.
  43. Can. J Microbiol v.27 The influence of tempe-rature on the growth inhibitory effect of carbon dio-xide on Pseudomonas fragi and Bacillus cereus Enfors, S. O.;Molin, G.