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Abstract
The nonlinear effects on the statistical properties of wave groups in terms of the average

number of waves in a group and the mean number of waves in a high run is studied in this
paper utilizing the complex envelope and total phase function, random variable transformation
technique and perturbation method. It turns out that the phase distribution is modified
significantly by nonlinearities and it shows systematic excess of values near the mean phase and
the corresponding symmetrical deficiency on both sides away from the mean. For the case of
threshold crossing rate, it turns out that threshold crossing rate reaches its maxima just below
the mean water level rather than zero and considerable amount of probability mass is shifted
toward the larger values of water surface elevation as nonlinearity is getting profound.
Furthermore, the mean waves in a high run associated with nonlinear wave are shown to have
larger values than the linear counterpart. Similar trend can also be found in the average number
of waves in a group.
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1. Introduction

The grouping of high waves is animportant
parameter in many engineering problems
associated with port development, which may
influence long period oscillation of moored
vessels and other floating structures and surf
beat. After the Gaussian model was first
developed in well known papers by Rice (1944),
particular attention to properties of wave groups
in Gaussian noise was paid by Longuet-Higgins
(1957). Recent interests in this subject (Goda,
1983) have been stimulated by the suggestion
that exceptional damage to ships, coastal
defences or offshore structures may be caused
by the occurrence of a run of successive high
waves. Further reason for interest is the
relation of wave groups with the formation of
wave breaking. Longuet-Higgins (1984) had
obtained the expressions for wave group length
and length of a high run using two apparently
distinct approaches in the context of Gaussian
waves; first, by a wave envelope function and,
later, by treating the sequence of wave heights
as a Markov chain. It was shown that two
approaches are roughly equivalent and spectral
bandwidth has a significant influence on the
wave group length and the length of a high
run. On the other hand, the probable effect of
nonlinearity on the formation of wave group in
random wave field of finite bandwidth remains
uncertain due to the complicated form of non-
linear random waves which was first developed
by Longuet-Higgins in 1963. In a case when
the underlying frequency spectrum is narrow,
the stochastic representation of nonlinear sea
surface is reduced to a familiar form in which
each realization is an amplitude modulated
second order Stokes wave (Tayfun, 1980 1986).

In contrast with the intricate complexity of
the expression of nonlinear waves of finite
bandwidth, such an approximation constitutes
a simpler formulation to study numerically or
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analytically the nonlinear effects on the
statistical description of wave properties. But
considering the side band instability of Stokes
wave, the narrow band assumption at the site
away from the generating area is no longer
valid. The search for a way simpler than that
of Longuet-Higgins (1963) to describe non-
linear waves of finite bandwidth was recently
carried out by Tung et al. (1989). Based on
the studies of Tayfun (1980, 1986). Tung et al.
(1989)
pression for

proposed a simple but accurate ex-

second order nonlinear wave
elevation for waves of moderate bandwidth.
This wave model was more elaborated by Cho
and Yoon (1992) to analyze the extreme dis-
tributions of wave elevation. It turns out that
as nonliearity is getting profound, these extreme
distributions deviate from the linear counter-
part in an increasing manner. The general
character of this deviation is in the form of a
spreading of the density mass toward the
larger and smaller values of crest. Hence, it
can be deducible from this tendency that there
should be a significant modification in wave
group properties when nonlinearity be in-
troduced. The objective here is to gain some
theoretical insight into the nature of nonlinear
effects on the statistical properties of wave
group in terms of the wave group length and
the length of a high run, quantities that are of
great in the design of ships,

coastal defences or offshore structures. In this

importance
paper, our attention is centered on deep water
waves only.

2 . Review of Wave Group Theory

It is known that for stationary random
process ¢(Hof arbitrary bandwidth, the average
number of waves in a group G and mean
number of waves in a high run H (Lin, 1967) are

G= N (&)/Na(Ayp) (1
H: N{(ZO)Q (A())/NA(AG) (2)
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where

Nty = [ € £ (5 E)dE (3
NaA)= [ A faa(A, AYdA @)
AA)= [ fa A (5)
In Egs. (3. (4 and (5), f.{-,-)and
faa(+, ) are the joint probability density

function of ¢ and ¢ [(overdot denotes time
and the joint probability density

function of A and A ,

derivative)
respecively, and N(&)
represents the number of upcrossings by ¢ of
a given level §, per unit time and Na(A4,) is
the number of up-crossings of a given level A,
per unit time by the wave envelope A and
QA ,) is the exceedance probility of a given
level A, by the wave envelope. To apply Egs.
(1) and (2) to nonlinear random waves, it is
necessary to have Ful£, 8 and fa,(A, A)
which in turn require a nonlinear wave model
of finite bandwidth.

3. Envelope and Phase Process of
Nonlinear Random Waves

Consider infinitely long-crested waves of
arbitrary bandwidth in deep water. The surface
displace displacement is given by (Longuet-

Higgins, 1963)

&= zoaicosxl--f—?lé ZZ:.'O ;Oa,-ajw?COS(xi—Fx,-)
ZL > Yaaloi—wcos(r—x)  (6)

=0 i

)

in which yx,=kx—wit+te;, Fk;is the wave

number, o, = (gk) /* is wave frequency, &; is
random phase uniformly distributed over
the interval (0,27) and a; is the amplitude of
introducing the

the component wave. Upon

following random processes,
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01=W goaicosxi (7
772=—a—412~)m- iﬁ:oaiw ;sin x; (8)
—(71)172— l_ﬁi‘,oaicz)?cosxi (9)
"= )1 Z a;sing; (10)
-—W 20@-&)1—0087{2- (11)
Z aw?sing; (12)

g =— (M )1
it was shown that the nondimensional non-
wave elevation ¢, can be written as

1989)

linear

(Tung et al.,
&= g/(mo)l/z
M,
3(7”—2)1/2(711 - ‘é‘ ennyt % engng)  (13)

where M, and m; are ith spectral moments
of the linear and nonlinear wave elevation,
respectively, and e=(M)'"%/g . For a mon-
ochromatic waves of amplitude « and frequency
w., M=dw'/2 soth ate=ak/2is a small
quantity. For the problem under consideration,
¢ will be used as a perturbation parameter.

The Hilbert transfer of ¢, T,
presented by

can be re-

=8/ (m)"* =( 0)1/2(774 —epp).  (14)
On this basis, one defines the complex
process

W= +i8=Ae” (15)
where 7 is the imaginary unit. Hence the
nondimensional wave envelope and phase

process are defined by

A=(G+T H" (16)
p=tan ' §/4 an
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4 Joint Distribution of Wave
Envelope and its First Derivative

Our task is to obtain the joint distribution of
wave envelope, its first derivative to be used
in Eqs. (1) and (2). To this end, we carry out
the differentiation of nonlinear wave elevation
and its Hilbert transform with respect to time.
We first note that

7= 711(M0 )12 (18)
m= " (19)
2= )" (20)
7%= 714(M° )12 (21)

and to the first order of e, mg= M, my=M

and m, =M, . Based on this facts, nondimen-

sional wave elevation ¢, can be rewritten, to

the order of v,

Acosp= é‘/(mo)”2

~

mn— % emnst % ENyTls (22)

where
v= (MM, MD =D,

0<< 1 (23)

is a measure of the bandwidth of the frequency
spectrum which, for all practical purpose, is a
small quantity. Then, it follows that. to the
order of v ,

A cosp—A ¢ sinp= ¢ [(m)""
=y —2E0273 (24)
A sinp= T /(M)
=04 €473 (25)
A sing+A ¢ cosp= T (mp
=5 —enyms-emns  (26)

The random variablesA, A . ¢ and ¢ are
seen to be functions of 71,72, 73. 7. 75 and 7
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which are random variables having zero mean
and unit standard deviation. Furthermore, the
statisti-

pairs (m, 75, 73)  and (74, 72, 7)  are

cally independent, each of which is jointly
Gaussian. Therefore, the joint distribution of

7. 7. 7. M. 75 and 7 is given by

fwmwmw( Lt Tt Tt v)
:f”l”.ﬂ”:i( TR )fﬂmﬂz’]s( BT ) (27)
where
fVlWW'x( st T ) (28>
3
= Goris ™ vl asT B 2 IS
fm’/zﬂﬂ( TR ) (29)
3
WIS—IT exp[— MNP

In Egs. (28) and (29), 1Silx

the element in the jth row and kth column of

. the cofactor of

the matrix of covariances S;. is given,

respectively, by

E[#1 Elmnl E [7175]
S,=|E [7sm] E 7] Elusnll (0
E [n3m) E lmn]l E (73]
and
E 7] E [mm] E [nns)
S, | Elnen) E ) E [menel] (3D
E [ngml E [nen] E (7]

where E [ - Jis used to denote the expected
value ofquantity enclosed in the brackets. By
introducing the auxiliary random variables,

a=n; (32)
B= g (33)
the joint distribution of A, A, ¢and
¢, fanps (). can be obtained by the

standard method of transformation of random
variables (Papoulis, 1965). That is,
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fA/i ¢¢ (- ):f'hwsw:;(”l,%’ ”S)fv,,r;g,m;(m’ 772.776)

71 727374 75 Wg
—_—— 3
K AoA ¢a B) (34)
Jacobian of the variable
transformation. From Egs. (24), (25), (26),

(28) and (29), and following the perturbation

where J is the

technique (Huang et al., 1983), it may be
shown that, to the order of ¢ ,
1] 1=A+ 2 ead? (35)

2

Performing the integration with respect to «a

and 8 ,
FaangesCruru ) (36)
:fffAA¢¢aB(""""'»’)dadﬁ

the joint distribution of wave envelope, phase
and their
obtained. From Egs.

first derivative can be
(24) (25),
following the similar procedure in the trans-

process
and and

formation of random variables, the joint
distribution of nondimensional wave elevation

and its first derivative is given by

feo (8 €)= F(1+0.56(T0,— pr00)E

+0.56( 005 —401) - (£ § ' =5 018"

exp{ 5 (¢4 £9) (37)

where the correlation coefficients p; are
or = Elmnl =  E [nu] (38)
oy = E [772776] = _E[773775] (39)
ps = E[nml = —E [n9s] (40)

As &=0, the joint distribution in Eq. (37) is
reduced to jointly Gaussian as expected.

5. Average Number of Waves in a
Group, Mean number of Waves
in a High Run

Substituting Eq. (37) into Eq. (3), we can
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obtain the number of up-crossings by non-
dimensional wave elevation of a given level per
unit time N((&;). That is, NJ(¢&,) is given by

NA&) = o={1+E (o —00t,— 5 0.8])

. exp(~%§5) (41)

Integrating Eq.(36) with respect to A, A

and ¢ vields the phase distribution in the
form

f¢(¢)=~21;{1+f\/§7?plcos7r] (42)

As e=( , the phase distribution in Eq. (42)
is reduced to the well known uniform dis-
tribution. From the marginal distribution of
wave envelop and its first derivative
obtainable from Egs. (36), (41)., (1) and (2),
average number of waves in a group G and
mean number of waves in a high run H are
given, respectively. by

— 1 £ _ _E
G= \/—Z—mAO {1+ 9 (0203 =018 D] P]fﬂ}
- exp{l%(é‘%—Ag)] (43)

and

A= —ia. rll—_;%{l+§e(pzps—m)§o*§m§3}

. exp{—% §§} (44)
6. Numerical results
To quantify the above results, we must

specify the wave spectrum from which the
quantities o , 0y . p3 and e may be calculated.
In this study. Wallops
spectrum proposed by Huang et al. in 1981
based on the hydrodynamic analysis rather
than data fitting which takes the form

we shall use the

_ 177 2 o om @
0 (W= x|~ (0] (45)

4
where
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log 2%&%) )

IogZ (46)

m= |

is the absolute wvalue of the slope of the
spectrum on the log-log scale in the high
frequency range and

1
€= MP/Ly = ok/(27) = &/(27) A7)

is the significant slope. L, being the wave
length whose frequency w, corresponds to the
peak of the single peak Wallops spectrum. In
Eq. (45), the coefficient « is given by

21 2m (m—1)/4

NGk (48)

1
I [(m—1)/4]

where I'[-] is the gamma function
(Abramowitz and Stegun, 1968). From (45), it
may be shown that

I [(m—3)/4]

= T =) P (=5 Y
o F‘2[(mF—:E»(/’Zf]-r[l’%f1 21;143)/41 (50)
S e (e AT e
e = ong [ Llm=B)AI 1" (52)

so that €, o, ;sand py are solely dependent

on the value of € which was shown (Huang
1981) to rarely exceed 0.03 in the
In Figs. 1 and 2.
up-crossings in Eq. (41) is plotted for varying

et al.,
ocean. the number of

& and N(&;) of linear waves is also included

for the comparison. Here, it is obvious that
threshold crossing rate reaches its maxima
just below the mean water level rather than
¢,=0, and considerable amount of probability

mass is shifted toward the larger values of &,

as nonlinearity is getting profound: this is

consistent with the vertically asymmetric
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property of nonlinear waves which are known
to have more sharp peaks and shallower
troughs than the linear counterpart.  The
phase distribution is plotted in Fig. 3 for
& =0.01, 0.015, 0.02, 0.025 and 0.03. It
out that the phase distribution is
modified significantly by nonlinearities, and it

shows a systematic excess of values near the

turns

mean phase and corresponding symmetrical
deficiency on both sides away from the mean.

In Figs. 4 and 5, the average number of waves
(43)
varying ¢ and A, with £=0.03, respectively,

in a group G in Ea. is plotted for

0.2

Fig. 1. Threshold Crossing Rate for Varying &

0.2

0.15

0.1

N(Z,)
0.05

Fig. 2. Threshold Crossing Rate for £=10.03
and 0.045 with a Linear Counterpart
(solid line: nonlinear, dashed ling: linear)
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Fig. 3. Phase Distribution for Varying & A,
Fig. 5. Mean Number of Waves in a Group with a
Linear Counterpart for £€=0.03and ¢,=1.17
(solid line: nonlinear, dashed fine:linear)
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Fig. 4. 3-D and Contour Plot of Mean Number of Waves in a Group for Varying ¢.,and A, with £=0.03
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Fig. 6. 3-D and Contour Plot of Mean Number of Waves in a High Run for Varying ¢, and A, with & =0.03
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Fig. 7. Mean Number of Waves in a High Run with a
Linear Counterpart for é=0.03and ¢ ,=1.17
(solid line: nonlinear, dashed line: finear)

and the
setting =0

linear counterpart obtainable by
is also included in Fig. 5 for
thecomparison. The mean number of waves in
a high run H with a linear counterpart is
plotted in Figs. 6 and 7. It is noted that for
random process of moderate bandwidth, the
average number of waves in a group and the
mean number of waves in a high run differ
from the linear counterpart. The general
character of this difference is that ¢ and H is
range of wave

increased over the entire

envelope.
7. Conclusions

After the Gaussian model was first developed
by Rice (1944), there was a great deal of
progress on the theory of nonlinear waves.
But these progresses was not extended to the
nonlinear statistical properties of wave groups
due to the complicated form of nonlinear
random waves which deserve much attention
in the context of probable damage to coastal
defences or offshore structures. In a case
when the underlying frequency spectrum is
narrow, the stochastic representation of a
nonlinear sea surface is reduced to a familiar

form in which each realization is an amplitude
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Stokes
In contrast the intricate complexity of the

modulated second order wave.

expression of mnonlinear waves of finite
bandwidth, such an approximation constitutes
a simpler formulation to study numerically or
effects
statistical description of wave properties. But
considering the side band instability of Stokes

waves, the narrow band assumption at the

analytically the nonlinear on the

site away from the sgenerating area is no
longer valid. For waves of finite bandwidth,
an approximate wave model proposed by Tung
(1989)

which the joint distribution of nonlinear wave

et al. is promising alternative from

elevation and its first derivative can be
obtained and the structure of which is simple
enough for statistical properties of such non-
linear waves to be obtainable. Based on this
wave model, overdue task of investigating non-
linear effects on the statistical properties of
wave groups in terms of the average number of
waves in a group and the mean number of
waves in a high run was resumed in this study
utilizing the complex envelop and the total
phase function, random variable transforma-
tion technique and perturbation method.

It turns out that phase distribution is
modified significantly by nonlinearities, and it
shows systematic excess of values near the
mean phase and corresponding deficiency on
both sides away from the mean. For the case
it is noted that

rate reaches its maxima

of threshold crossing rate,
threshold crossing
just below mean water level, and considerable
amount of probability mass is shifted toward
the larger values of water surface elevation as
nonlinearity is Further-
more, the mean waves in a high run associated

getting profound.

with nonlinear waves are shown to have larger
values than the linear coun terpart. Similar
trend can also be found in the average number

of waves in a group.
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