광합성 미세조류인 Chlorococcum littorale을 이용한 이산화탄소의 생물학적 고정화

  • 김태호 (강원대학교 식품생명공학부) ;
  • 성기돈 (한국 에너지 기술연구소) ;
  • 이진석 (한국 에너지 기술연구소) ;
  • 이준엽 (강원대학교 사료생산공학과) ;
  • 오상집 (강원대학교 사료생산공학과) ;
  • 이현용 (강원대학교 식품생명공학부)
  • Published : 1997.06.01

Abstract

Chlorococcum littorale has been grown in high $CO_2$ concentrations to utilize $CO_2$ gas in the polluted air. The effect of incident light intensity on the specific growth rate is expressed by a photoinhibition model, showing half- saturation constant, $K_0\;as\;8\;(W/m^2)$ and inhibition constant, Ki as 35 $(W/m^2)$. The maximum specific growth rate was also estimated as 0.095 (1/day) under this condition. This strain maintained the optimum growth rate in 20% of $CO_2$ gas but 50% of input $CO_2$ gas is the maximum concentration considering the economical efficiency. The maximum Specific $CO_2$ consumption rate, $qCO_2$ was measured as 17.48 (mg $CO_2/g$ dry wt./day) in batch cultivation, 11.2 (mg $CO_2/g$ dry wt./day) in fed-batch cultivation and 10.87 (mg $CO_2/g$ dry wt./day) at 0.065 (1/day) of dilution rate in continuous cultivation. The chemical composition of the biomass obtained from this process showed 32.5% of protein, 27.5% of lipid, 16.5% of carbohydrate and ash 11.7%.

Keywords

References

  1. Chemical Industry and technology v.13 no.4 생물학적 이산화탄소 고정화 공정의 개발 이선복;박찬범;서인수
  2. 화학 공업과 기술 v.11 no.4 이산화탄소에 의한 지구온난화와 대책기술의 연구동향 박진원;이승무(등)
  3. 생물화공 v.8 no.2 제철소 부생가스의 생물학적 전환기술 박찬범;이선복
  4. Recent Advances in Bioprocess Engineering v.3 조류를 이용한 이산화탄소 고정화 제거 수술 조중훈;양지원
  5. 화학공업과 기술 v.10 no.2 에너지 이용과 지구온난화 대책 민병무;김성현;손재익
  6. Journal of Biological Chemistry v.193 Protein measurements with the Folin phenol reagent Lowry, O. H.;N. J. Rosebrought;A. L. Farr;R. J. Randall
  7. Plant Physical. v.64 Measurement of Carbon Dioxide Compensation Points of Freshwater Algae Birmingham, C.;B. Colman
  8. J. Ferment. and Bioeng. v.81 no.5 Carbon Dioxide Fixation in Batch Culture of Chlorella sp. Using a Photobioreacter with a Sublight-Collection Device Satoshi, H.;M. Hayashitani;M. Taya;S. Tone
  9. Biotechnol. and Bioeng. v.45 Photolithotrophic Cultivation of Laminaria saccharina Gametophyte Cells in a Stirred-Tank Bioreactor Hans, Q.;L. Gregory.
  10. J. Sci. Fd. Agric. v.18 Amino acid composition and Nutritive Value of the Algae Spirurina maxima Clement, C.;C. Giddey;R. Menzi.
  11. Biotechol. and Bioeng. v.41 Productivity of outdoor algal culturesin enclosed tubular photobioreactor Lee Y. K.;C. S. Low.
  12. CNR-IPRA Effects of temperature on growth and biomevhanical composition in Spirurina platensis Tomaselli, L.;L. Giovannetti.;B. Pushparaj.;G. Torziiolo., Monogr.
  13. J. Phycol. v.28 Effects of Variation in Temperature on the Biochemical Composition of Eight Species of Marine Phytoplankton Peter A. T.;M. Guo.
  14. J.Chem. Tech. Biotechnol. v.56 Gas-liquid transfer of CO₂ in microalgal culture Grima, E. M.;Perez, J.A.S.;Camancho, F. G.;Medina, A. R.
  15. J. Mar. Biotech v.1 A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture Kodama, M.;H. Ikemoto;S. Miyachi
  16. Microalgae Biotechnology and microbiology Becker, E.