회전원판 반응조를 이용한 Pseudomonas sp. KS-96에 의한 gallic acid로부터 Pyrogallol의 전환

Bioconversion of Pytogallo from Gallic Acid by Pseudomonas sp. KS-96 using Rotating Disc Contactor

  • 발행 : 1997.06.01

초록

Gallic acid로부터 pyrogallol로 전환하는 균주를 토양에서 분리 동정하여 얻는 Pseudomonas sp. KS-96의 균체를 회전원판 반응조에 고정화시킨 후 연속전환을 시도하여 다음과 같은 결과를 얻었다. Gallate decarboxylase의 활성은 배양 24시간에서 가장 좋았다. 반응조의 원판에 gallic acid가 함유된 액체 배양액을 시간당 20m${\ell}$씩 공급하면서 균체막의 두께가 steady state에 도달할때까지 공급하였다. 균체를 고정화 시킨 후 시간 경과에 따른 전환율은 18시간부터 36시간에서 전환율이 높았다. 균체 고정화 후에 gallic acid를 15g/${\ell}$ 함유하는 기질을 시간당 30m${\ell}$씩 주입했을 때 pyrogallol의 전환율이 가장 좋았으며 회전원판 반응조에 의한 연속적 전환은 6일에서 8일까지가 각각 81%, 80%로서 가장 높았다.

In previous paper Pseudomonas sp. Ks-96 isolated from the bioconversion into pyrogallol from gallic acid . Continuous bioconversion of pyrogallol was carried out using rotatory disc contactor immobilized Pseudomonas sp. Ks-96 . Enzyme activity of gallate decarboxylase released from Pseudomonas sp. Ks-96 were shown at the highest activity on 24h incubation. Culture media containing gallic acid supplied on the flow rate of 20m${\ell}$/h until thickness of cells wall reached steady state. Bioconversion rate of pyrogallol from gallic acid showed at highest level ranging from 18hr to 36h according to time courses. Continuous bioconversion of pyrogallol using rotating disc contactor was about 82% and 80% between 6 and 8 days at the feeding rate of 300m${\ell}$ per hour in the medium containing 15g/${\ell}$ gallic acid.

키워드

참고문헌

  1. In Encyclopedia of chemical Technology v.2 Pyrogallol Raymond, E. K.;Othmer, D. F.
  2. Ind. Eng. Chem. v.39 Tannnins and allied chemicals in mercaptan removal processes Happel, J.;Cauley, S. P.
  3. Anal. Chem. v.64 Electro-chemical immobilization of enzymes. 3. Immobilization of glucose oxidase in thin films of electrochemically polymerized phenols Philip, N. B.;Tebbutt, P.;Tyrrell, C. H.
  4. Biochim. Biophys. Acta. v.28 The biosyn-thesis of patulin related aromatic substances from Penicillium patulum strain 2159A Tanenbaum, S. W.;Bassett, E. W.
  5. Kagaku v.29 Degradative metabolism of tannin by molds Nishira, H.
  6. J. Ferment, Boieng. v.74 Bioconversion of gallic acid into pyrogallol by immobillzed, Citrobacter freundii TB3 Kumear, R. A.;Jayaraman, A.;lakshmanan, M.;Gunasekaran, P.
  7. J. Ferment, Technol. v.58 Bacteria degrading tannic acid and related compounds Descamps, A. M.;Mahoudeau, G.;Conti, M.;Lebeault, J. M.
  8. Science v.193 Microbial degradation of condensed tannins Grant, W. D.
  9. Agric. Biol. Chem. v.40 Purification and some properties of yeast tannase Aoki, K.;R. Shnke;H. Nishira
  10. FEMS Microbiol. Lett. v.5 Vaidyanathan, Purification and properties of pyrocatechuate decarboxylase from Aspergillus niger Ramachandran, A.;Subramanian, V.;Sugumaran, M.;C. S.
  11. Agric. Biol. Chem. v.46 isolation and identification of a pyrogallol producing bacteram from soil Yoshida, H.;Tani, Y.;yamada, H.
  12. 昭61-108393 ピロガロ-ルの 製造迲 日本公開特許公報(A) 菊地護;湯淺克己;水澤淸
  13. 昭63-49088 微生物によるピロガロ-ル ピロカテコ-ルもしぐはそれらの誘導 の 製造方迲 日本公開特許公報(A) 山本英津子;植田宏
  14. Agric. Biol. Chem. v.49 Microbial production of pyrogallol through decarboxylation of gallic acid Yoshida, H.;Yamada, H.
  15. 경성대학교 석사학위논문 Pseudomonas sp.에 의한 pyrogallol의 생산 안성만
  16. Anal. Biochem. v.28 Determination of each constituent in mixtures of catechol and protocatechuic acid, quinol and pyrogallol and gallic acid Grant, D. J. W.;Patel, J. C.
  17. Anal. Chem. v.179 Silica gel layer chromatography of phenols and phenolcarboxylic acid Pautuska, G.
  18. South lake Taboe stateline Rotating biological contactors for second watewater treatment. CUP/wesner, Seminar Antonie, R. L.
  19. Water Res. v.16 mass transfer inrotating biological contactor Shieh, W. K.
  20. Biotec. Bioeng. v.18 Theoretical model for a submerged biological filter Jennigs. P. A.
  21. J. Water pollut. Contr. Fed v.45 Effect of thickness on bacterial film Hoehn, R. C.;Ray, A. D.
  22. J. W PCF v.48 Verification sutdies of the biofilm model for bacterial substrate ultilization William, K. J.;McCarty, P. L.
  23. J. WPCF v.48 A model of substrate ultilization by bacterial films Williamson, K.;Mccarty, P. L.
  24. 醱酵微生物 Ⅰ 植村定治郎;相田浩
  25. Biotech. Bioeng v.23 Fouling biofilm development : process analysis Charaaddis, W. G.
  26. J. Sanitary Eng. ASCE v.93 Simulation of the tricking Filter process maier, W. J.;Behn, V. C.;Gates, C. D.