An Extracellular Polysaccharide Produced by Methylovorus sp. Strain SS1 Growing on Methanol

메탄올을 이용하여 성장하는 Methylovorus sp. strain SS1이 생산하는 세포외 다당류

  • 추원호 (연세대학교 이과대학 생물학과) ;
  • 송택선 (연세대학교 이과대학 생물학과) ;
  • 김영민 (생물산업소재연구센터)
  • Published : 1997.06.01

Abstract

Mrthylov~orits sp. starin SSl, a restricted facultative methylotrophic bacterium. growing on methanol was found to produce small amount of extracellular polysaccharide (EPS) under the optimal growth conditions, while it produced large amount of the polysaccharide under nitrogen limihtion. The optimal ratio of carbon to nitrogen for EPS production were found to be 5.2. The optimal temperature and pH for EPS production were 30^{\circ}C.$ and 6.5, spectively. The EPS consisted of carbohydrate, protein and small amount pyruvic acid. The reducing sugars in the EPS consisted mainly of glucose and a small amount of mannose. The EP!; treated with ethanol (EPSae) was found to have several properties different from those of the EPS which was not treated with ethanol (EPSbe); the EPSae contained no pyruvic acid. It also contained less protein and showed much lower viscosity than the EPSbe. The viscosity of EPSbe was very sensitive to NaCl and decreased t;harply upon exposure of the polysaccharide to even 0.5% (wiv) NaCl solution. The viscosity, however, was increased irreversibly upon exposure of the saccharide to high temperature. The molecular weight of EPS was estimiited to be $2.5{\times}$10^6$ - $3.5{\times}*$10^6$ using Sepharose hB column chromatography. Scanning electron microscopy revealed that the lyophilized EPSbe and EPSae have a structure of thread-like fibers and a mesh-like structure resembling bee-hive, respectively.

제한통성 메탄올 자호세균인 Methylovorus sp. strain SS1은 최적 성장 조건하에서는 소량의 세포외 다당류(EPS)를 생산하였지만, 질소원이 결핍된 성장 조건하에서는 성장속도는 느렸지만 다량의 EPS를 생산하였다. EPS는 배지내의 탄소대 질소 비율이 5.2일 때 가장 많이 생산되었다. EPS 생산을 위한 최적 온도는 30^{\circ}C.$이고 최적 pH는 6.5였다. EPS는 탄수화물과 단백질 및 약간의 피루브산으로 구성되어 있었고, 환원당으로는 다량의 포도당과 소량의 mannose가 존재하였다. 에탄올을 처리한 EPS(EPSae)에는 에탄올을 처리하지 않은 EPS(EPSbe)에 존재하던 피루브산이 존재하지 않았고, EPS보다 단백질의 양도 적고 점성도 낮았다. EPSbe의 점성은 NaCl에 의해 큰 영향을 받았는데, 0.5%(w/v) 농도의 NaCl 용액에서도 점성이 크게 떨어졌으며, 높은 온도에서는 점성이 비가역적으로 크게 증가하였다. Gel filtration 방법으로 조사한 EPSae의 분자량은 $2.5{\times}$10^6$ - $3.5{\times}$10^6$이었다. 냉동건조한 다당류를 전자현미경으로 관찰하였을 때, EPSbe는 섬유모양을 하였고, EPSae는 벌집모양의 망상구조를 하고 있었다.

Keywords

References

  1. Biochem. J. v.96 The gel filtration of proteins related to their molecular weights over a wide range Andrews, P.
  2. The biochemistry of methylotrophs Anthony, C.
  3. Adv. Microbial. Physiol. v.27 Bacterial oxidation of methane and methoanol Anthony, C.
  4. Methods in enzymology v.1 Bernfeld, P.;S. P. Colowick(eds.);N. O. Kaplan(eds.)
  5. Biotechnology: Principles and applications Brierly, C. L.;D. P. Kelley;K. J. Seal;D. J. Best;I. J. Higgins(et al.)(eds.)
  6. Cabohydrate analysis: a practical approach Monosaccharides Chaplin, M. F.;M. F. Chaplin(ed.);J. F. Kennedy(ed.)
  7. Agric. Biol. Chem. v.47 Acidic polysaccharide production from methane by a new methane-oxidizing bacterium H-2 Chida, K.;G. Shen;T. Komada;Y. Minoda
  8. Biotech. Lett. v.13 Characteristics of a novel high viscosity polysaccharide, methylan, produced by Methylobacterium organophilum Choi, J. H.;D. K. Oh;J. H. Kim;J. M. Lebeault
  9. Kor. J. Appl. Microbiol. Bioeng. v.17 New extracellular biopolymer produced by Methylobacterium organophilum from methanol Choi, J. H.;U. T. Lee;J. H. Kim;J. S. Rhee
  10. Appl. Environ. Microbiol. v.33 Receptor site on clover and alfalfa roots for Rhizobium Dazzo, F. B.;W. J. Brill
  11. Anal. Chem. v.28 Colorimetric method for determination of sugars and relared substances Dubois, M.;K. A. Gilles;J. K. Hamilton;P. A. Revers;F. Smith
  12. Biotechnology v.3 Biomass from methane and methanol Faust, U.;P. Prave
  13. Appl. Environ. Microbiol. v.33 Mutant of Methylomonas methanolica and its chatacterization with respect to biomass production from methanol Haggstrom, L.
  14. Methods in microbiology Chemical analysis of microbial cells Herbert, D.;D. J. Phipps;R. E. Strange;J. R. Norris(eds.);D. W. Ribbons(eds.)
  15. Appl. Environ. Microbiol. v.37 Growth and polysaccharide production by Methylocystis parvus OMMP on Methanol Hou, C. T.;L. I. Laskin;R. N. Patel
  16. Biotechnol. Lett. v.12 Production of extracellular and cell-associated biopolymer by Pseudomonas atlantica Hsieh, K. M.;L. W. Lion;M. L. Shuler
  17. J. Gen. Microbiol. v.107 Investigation of the effect of environmental conditions on the rate of exopolysaccharide synthesis in A zotobacter vinelandii Jarman, T. R.;L. Deavin;S. Slocombe;R. C. Righelato
  18. Arch. Microbiol. v.137 Energy requirments for microbial exopolysaccharide synthesis Jarman, T. R.;G. W. Pace
  19. Agric. Biol. Chem. v.46 2-O-methyl-D-mannose in an extracellular polysaccharide from Hyphomicrobium sp. Kanamaru, K.;Y. Iwamuro;Y. Mikami;Y. Obi;T. Kisaki
  20. J. Bacteriol. v.148 Purification and some properties of carbon monoxide dehydrogenase from Pseudomonas carboxydohydrogena Kim, Y. M.;G. D. Hegeman
  21. Annu. Rev. Microbiol. v.44 Methylotrophs: Genetics and commerical applications Lodstorm, M. E.;D. I. Stirling
  22. J. Am. Chem. Soc. v.56 The determination of enzyme dissociation constants Lineweaver, H.;D. Burk
  23. J. Gen. Microbiol. v.113 Extracellular succinoglucan production by Agrobacterium radiobacter NCIB 11883 Linton, J. D.;M. Evans;D. S. Jones;D. N. Gouldney
  24. J. Gen. Microbiol. v.132 The enerfetics and kinetisc of extracellular polysaccharide producrion from methanol by micro-organisms processing different pathways of C as similation Linton, J. D.;P. D. Watts;R. M. Austin;D. E. Haugh;H. G. D. Niekus
  25. Biotechnol. Bioengin. v.26 The kinetics and physiology of stipitactic acid and gluconate production by carbon sufficient growing in continuous culture Linton, J. D.;R. M. Austin;D. E. Haugh
  26. J. Biol. Chem. v.193 Protein measurement with the folin phenol reagent Lowry, O. H.;N. J. Rosebrough;A. L. Farr;R. J. Randal
  27. Comprehensive biotechnology Microbial polysaccharides Magaritis, A.;G. W. Pace;M. Y. Murray(et al.)(eds.)
  28. J. Bacteriol. v.134 Biosynthesis of exopolysaccharide by Pseudomonas. aeruginosa Main, F. A.;T. R. Jarman;R. C. Righelato
  29. Carbohyd. Res. v.75 D-al-lose-containing polysaccharide synthesized from methanol by Pseudomonas sp. Misaki, A.;Y. Tsumuraya;M. Kakuta
  30. J. Mol. Biol. v.10 Order-disorder transition for a bacterial polysaccharide in solution a role for polysaccharide conformation in recognition bewteen Xanthomoans pathogen and its host Morris, E. R.;D. A. Ress;G. Young;M. D. Walkinshat;A. Darke
  31. Plant Physiol. v.67 The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii Robertsen, B. K.;P. Aman;A. G. Darvill;M. McNeil;P. Albersheim
  32. Kor. J. Microbiol. v.31 Isolation and characterization of a restricted facultatively methylotrophuc bacterium Methylovorus sp. strain SS1 Seo, S. A.;Y. M. Kim
  33. J. Gen. Microbiol. v.135 The regulation of exopolysaccharide prooduction and of enzymes involved in C₁assimilation in Methylophilus methylotorophus Southgate, G.;P. M. Goodwin
  34. Extracellular microbial polysaccharides Microbial exopplyasaccharide synthesis Sutherland, I. W.;P. A. Sandford(ed.);A. Laskin(ed.)
  35. Biotechnology v.3 Extracellular polysaccharides Sutherland, I. W.
  36. FESM Microbiol. Rev. v.87 Biocatalytic and fermentative production of useful chemicals by processes using methylotrophs Tani, Y.;K. Yamada;Y. Sakai;V. Vongsuvanlert
  37. J. Gen. Microbiol. v.104 Exopolysaccharide production by Pseudomonas NCIB 11264 grown in continuous culture Williams, A. G.;J. W. Wimpenny