I (| v & A)
#REREBSHRE G
B2RE F2W 197.12.31

Methodology for Extended Schema Representation
in Database Integration

A%

Abstract

There have been several research efforts to support nteroperability among
multiple databases. In integrating multiple databases, we must resolve schema
conflicts due to the heterogeneity in databases. To resolve these conflicts, not only
meta-data for database schemas but also general knowledge expressing the real
world meanings associated with the database schemas are required.

This paper presents a uniform representation method for relational schema and
general knowledge base that is composed, among other things, of concept hierarchy
and thematic roles in relationships, using the knowledge representation language Lx.

This representation method has a flexible descriptive power which facilitates
concepts to be expressed at different levels of granularity and can describe
semantically -rich expression in the knowledge base. Meta-data and related general
knowledge expressed in Lx are used for input of the next step, such as conflict

resolution and query processing of multiple databases.

AR AART L

1. Introduction

Many databases have been constructed by different groups of users and
organizations independently to meet their specific requirements during the last few
decades. There are many applications requiring data not only from a single database
but also from multiple databases in a local organization or networked world. Users of
database systems want to find data and information without knowing which database
has required data and where the database is located. For these reasons,
interoperability or integration of multiple databases is one of the essential research
issues in the database application area.

The two major approaches for database integration from separate databases are a
unified schema(global schema)[3, 6] and a multidatabase languagel10]. Following that,
Wiederhold suggested the concept of a mediator, “a software module that exploits
encoded knowledge about certain sets or subsets of data to create information for a
higher layer of applications™[16].

In any case of integrating multiple databases, we must resolve conflicts such as:
table-versus-table conflicts; attribute-versus-attribute conflicts; table -versus -attribute
conflicts; and so on, due to the heterogeneity in databases[8). To resolve these
conflicts, not only meta-data for local database schemas but also general knowledge
expressing the real world meanings associated with the database schemas are
required.

In this paper, we use Li[14, 15] as a meta-data and knowledge representation
language. Lx 1s notable in offering a flexible descriptive power which facilitates
concepts to be expressed at different levels of granularity and a versatile association
mechanism which 1s capable of linking partially related concepts.

Extended schema representation methodology described in this paper has some
advantages. Meta-data and related knowledge are represented in a uniform manner.
Semantically-rich expressions are meshed with database schemas which have been
already implemented. Semantic relations in the E R model disappear when they are
applied to the tables in relational database, but this method can keep entities,

attributes and relations of the E-R model continually without losing.

The rest of the paper is organized as follows: Section 2 gives related works;
Section 3 gives database schema and related knowledge representation using Li;
Section 4 illustrates the database heterogeneity resolution process and query
processing using this representation method. Finally, Section 5 concludes the paper

and lists some future research works.

2. Related Works

A well-known family of database integration approaches are the global schema
construction and the multidatabase language. Schema integration{global schema)
procedures were defined and several multidatabase approaches were compared by
Batini et. al.[2] and Sheth et. alll13]. In the schema integration approach, either a
global database administrator or a user has to first identify the semantic and other
conflicts, and then construct a global schema to resolve these conflicts, before data in
multiple databases could be accessed.

Problems of multidatabase approaches were summarized in Bright et. al.[3]. In the
multidatabase language approach, the burden of integration is shifted from global
database administrators to users and local database administrators. These methods
trade a level of data independence (the global schema hides duplication, heterogeneity,
and location information) for a more dynamic system and greater control over system
information. While specifying the contexts associated with attribute values, meta
-attributes are used in the mediation approach.

Following Wiederholds important concept of the mediator{15], Sciore et. al.[12]
developed an array of methods to resolve automatically semantic conflicts in
multidatabases. To specify the contexts associated with attribute values, meta
-attributes are used. Lim and Shinf9] suggested a mediator-driven query handling
approach in a multiple database environment using a knowledge base (concept
hierarchies, general domain knowledge) in addition to meta-data of data sources.

At any rate, we should have a representation method for meta-data of data
sources and related general knowledge to resolve conflicts in integrating databases.

Sciore et. al.l12] used a semantic-value schema, a semantic-value specification and

C-SQL(Context-SQL) as an extended SQL to resolve data conflicts in multiple
database. They did not describe the way of expressing the relationships among the
attributes in different tables; such as foreign keys, the one-to-many correspondence
relationship between relations in different databases, and the super-sub class
relationships. Garcia-Solaco et. all7] adopted the BLOOM model to represent
semantically rich structures of the schemas. BLOOM 1is a semantic extension of
object-oriented models and its main constituents are objects and classes. The
structure and behavior of their object members are described by class. The
description of properties and relationships to other objects are entailed in the
structure. This method considered the integration of classes, not attributes, and
cannot resolve the structural conflicts. Bright et. al.[3] proposed the Summary
Schemas Model{SSM) as an extension of multidatabase language systems. A
summary schema represents a concise, more abstract description of the semantic
contents of a group of input schemas. Rich semantic power of the SSM come from
the linguistic knowledge represented in online dictionaries and thesauruses.

New approach in representing database schemas and related knowledge is similar
to SSM. We use the frame based language L to represent Jocal database schemas,
and knowledge such as concept hierarchies and the case frame of verbs extracted
from the online dictionary[5} of a natural language. The relational schema with the
relationship of E~R model as well as related knowledge can be represented by Lk in
the same manner. As far as we know, this approach is the only one that can
represent database schema(table, attribute and relationship) and general domain
knowledge in rich semantic expressiveness on a natural language level. All of

database manipulation can be processed standard SQL without any extension.

3. DB Schema and Related Knowledge Representation

In this section, the language Ly is described briefly. Then the transformation rules
to represent relational database schemas into Lx and a method to represent related

domain knowledge using Li are described.

3.1 The Language Lk

The goal of this subsection is to summarize the Ly which was developed for use
in knowledge and data engineering areas, especially for the database application. Lk
can express entities, states, and events in the real world meaning. The database
schema and related knowledge are represented by using the basic unit of expression,
called c¢-terms(concept-terms). A c-term is a frame-based structure of the following
form:

et coite, ..., Coital,

where n = 0, [is called the head concept label, and for each i, 1 < | = n, ¢ is
called a concept-connector, t, being itself a c-term, is called a target of the
concept-connector, and c¢i'ti 1s called a concept-restrictor. The head concept label can
be a entity, state, or event label to denote the entity, state, or event in the real

world. Only a specific set of connectors for each !/ is permitted to be included in its

restriction.

Ly uses two special symbols, . and ., te denote the instantiation and
classification between two c~terms. For two c~terms, t; and ¢, £ - ¢ means ¢ is an
instance concept of t;, and & - t; means ¢ is a subclass concept of ;.

In order to express complex real world concepts freely, three ways of extending
the c-term class, such as indirect referencing, hyphenation, and fragmentation are
introduced.

Eight c-term manipulation operations are defined in order to perform indirect
associarions and other reasoning steps systematically. They are upward label
substitution, restrictor release, downward label substitution, restrictor introduction,
restrictor inheritance, membership identification, concept-connector identification, and
label-target rotation. These operations are used for generalization, abstraction,
deduction, abduction, focus change and so on. Details of syntax, semantics, and

c-term operations of the Lx and examples are described in [14, 15].

3.2 Relational Schema Representation in c-terms

This subsection suggests formal transformation rules to represent tables, attributes
and foreign Keys in a relational database.

Suppose that E is a table name in a database and it has a set of attributes, {a,
az, ..., an), 1 = 1. Some subset of attributes may describe a concept in the real world
collectively. For example, {street, city, state, zip-code, country} describes "address”
concept in the real world. We will call the set of those attributes the composite
attribute set. An attribute may have a limited number of domain values which
characterize the type of the table E. We will call those kinds of attributes the type
attributes. For example, a kind attribute of the item which has "book”, "microfilm”,

and "magazine” is a type attribute.

Transformation 1 (Composite Attribute Sets) If CAS is a composite attribute set,

{ai, ..., an}, in a table E, then CAS is transformed in the following form:
c-con:target(c-coni'target,, ..., c-conm'targetnl,

where c-con is a full meaningful word for the concept which is described by the

CAS, target is the same as c-con. c-coni, 1 < i < m, is a full meaningful word for

the concept which is described by the ai and target; is a.

(Example 1) The attribute set {str, ct, st, zip, country} of the employee table will

be transformed into address:rADDRESS|street:STR, city:CT, zip-code:ZIP,

country. COUNTRY.

Transformation 2 (Type Attributes) If T is a type attribute in a table E and T

has {vi, .., vk} as its domain values, then T is transformed in the following form:

¢ -con:target={c-contarget;, ..., c-contargety},

where c-con is the meaningful word for the concept denoted by T and target is 7.
c-coni,, 1 = { = k, is the full meaningful word for the v; and target; is v;.
(Example 2) kind attribute of the item which has "book”, "microfilm”, and
"magazine” as its value will be transformed into kind:KIND={book:BOOK,
microfim:MICROFILM, magazine MAGAZINE}.

Transformation 3 (Attributes) If A is an attribute in a table £ which is not
belonging to a composite attribute set or is not a type attribute, then A is

transformed in the following form:

c-con:target,

where c-con is a full meaningful word for the concept described by the attribute A

and target is A.

(Example 3) ssn attribute of the employee table which denotes the social security

number of a employee is transformed into social security-number:SSN.

Transformation 4 (Tables) If E is a table name in a database and it has a set of

attributes {att, atts, ..., attn}, n = 1, then E is transformed in the following form:

[[table-name:E, c-conitargety, ..., c-conp'targetnl, 1 < m < n,

where [/ is a full meaningful word for the concept which the table name E denotes.
c-coniitarget, 1 = i =< m, is constructed from an attribute or a subset of the

attributes set through Transformation 1, 2, or 3.

(Example 4) Lets suppose that the relation table item has attributes set, {i#, title,
a name, str, city, state, country, subject, type} and type attribute has the set of
domain value, {book, c¢d-rom, microfilm}. The table is transformed into

LIBRARY-ITEMItable-name:ITEM, idI#, titleeTITLE, author-name:A NAME,

subject: SUBJECT. address:ADDRESS[street:STR, city:CITY, country:COUNTRY],
type:TYPE={book:BOOK, cd-rom:CD-ROM, microfiim:MICROFILM}].

The E-R model describes data as entities, relationships, and attributes. Not only
entities and attributes but also relationships are applied to the tables in a relational
database. A relationship set that is represented via a record containing the primary
key of each of the entities and the attributes of the entity involved is used to
represent the relationship. It is difficult to extract semantic relationships in reverse
from the table in the relational database, because the property of relationships
disappears after implementation.

However, c-terms can keep the relationships in E R model via a state/event
c-term using case frame and thematic roles in natural languagell). The relationships
represented in c-terms provide very useful knowledge when resolving the conflicts
due to the foreign key relations and semantic heterogeneity in database integration. A
knowledge base of relationships is constructed from an electronic dictionary and

thesaurus. This is an excellent advantage in new approach.

Transformation 5 (Foreign Keys) If a set of attributes FK in relation R; is a
foreign key and it refers to the relation Rz which has a set of primary keys PK.
Then the foreign key relation is described in c-terms. ¢ terms whose head label is
always FK is intended to denote the foreign key itself and the remaining c-term
which is an event/state c-term is intended to denote the semantic meaning of the

foreign key relation. The FK is constructed in the following form:

FKlsource:R\[fk\, ..., fkul, reference:R:lpk, ..., pkall,

where n = 1, fki & FK and pki € PK.

The event/state c-term is constructed as following form:

llt-roleih, .., t-rolennl,

where | is the state/event label to denote the semantic of the foreign key relation.
t-role; is one of the thematic roles. /i i1s corresponding to the head label of the
c-terms into which the table R; is transformed into c—-terms through Transformation

4, respectively.

(Example 5) Figure 1 shows the E-R diagram that does not have relationship table
after implementation. The foreign key relation is the attribute itself in the entity
tables. The relational schema is from [6].

FKisource: EMPLOYEEIldnol, reference. DEPARTMENT [dnumber}] and
WORKS5-FOR{agent: EMPLOYEE, beneficiary:DEPARTMENT] are constructed for
the foreign key dno of the table EMPLOYEE which refers to the dnumber attribute
of the table DEPARMENT.

Employee | Department

An employee works for a specific department.

employee(fname, minit, Iname, ssn, ..., dno)

department(dname, dnumber, mgrssn, mgrstartdate)

FKlisource: EMPLOYEEI|dnol, referencee DEPARTMENT{dnumber]]
WORKS-FORl|agent: EMPLOYEE, beneficiary:DEPARTMENT]

Figure 1. Foreign key relation(Case 1)

(Example- 6) Figure 2 shows the E-R diagram from [4] that has relationship table

after implementing in the relational database. The foreign key relations e attr)}wtes

in the relationship table.

A waiter serves a guest at a table.

WAITER (waiter#, name, sdate)
TABLE(table#, seats)
GUEST (guest#, noinparty)

SERVE(date, waiter#, guest#, table#, tip, total)
FKlsource:WAITERlwaiter#], reference:TABLE[table#1]
FKlsource:WAITERIwaiter#l, reference.GUEST[guest#]]
FKlsource:GUEST|guest#], reference ' TABLE[table#]]

SERVE([agent: WAITER, object:GUEST, location:TABLE]

Figure 2. Foreign key relations{(Case 2)

Sample relational database modified from (8] and its transformation into the

c-terms are depicted in Figure 3.

Table name Attributes General Description

item (i#, title, a-name, subject, type, language) Library items

lc-num (i#, c-letter, f-digit, s-digit, cuttering) Library of Congress number
publisher (i#, name, tel, street, city, zip, state, country) Publishers

lend-info (i#, lend-period, library-use-only, checked-out) Lending Information

checkout-info (i#, id-num, hour, day, month, year) Borrower and due date
employee (fname, minit, Iname, ssn, address, salary) Faculties and staffs
student (name, ssn, dob, address, sex, gpa, adv#, major) Student

(a) relational database

LIBRARY-ITEMItable-nameITEM, id'I¥, title:TITLE, author-name:A-NAME,
subject:SUBJECT, type:TYPE={book:BOOK, cd-rom:CD-ROM, magazine MAGAZINE},
language:LANGUAGE]

LIBRARY-CONGRESS-NUMBERItable-name:LC-NUM, id:l#, c-letter:C-LETTER,
f-digit:F-DIGIT, s-digit:S-DIGIT, cuttering:CUTTERING]

Haslagent:ITEM, object:LC-NUM]
FKlsource:LC-NUMIid], reference:ITEMI[id]l

PUBLISHERI[table-name:PUBLISHER, id:I#, name:NAME, telephone-number:TEL,
address:ADDRESS[street:STREET, city:CITY, zip-code:ZIP, state:STATE,
country:COUNTRY]

Publish{agent: PUBLISHER, object:LIBRARY -ITEM]
FKlsource:PUBLISHERIid], reference:LIBRARY-ITEMIid]]

LEND(table~-name:LEND-INFO, id:I#, period LEND-PERIOD,

Iibrary -use—only:LIBRARY-USE-ONLY, checked-out:CHECKED-QOUT]

CHECKOUT[table-name:CHECKOUT-INFO, id:I#, lender- social-security -number:ID-NUM,
due-date:DUE-DATE[hour:HOUR, day:DAY, month:-MONTH, year:YEAR]]

Borrowlagent: EMPLOYEE, object:LIBRARY-ITEM]
FK(source:CHECKOUTId], reference:LIBRARY-ITEMIidl}
FKlsource:CHECKOUT(lender-social-security -number],
reference: EMPLOYZEEI[social -security ~-number]}
FKlsource:CHECKOUTllender-social - security-number],
reference: STUDENT [social - security -number]]

EMPLOYEEltable-name: EMPLOYEE, name:NAME!first- name:FNAME,
middle-name-initial MINIT, last-name:LNAME], social-security-~number:SSN,
address:ADDRESS, salary:SALARY]

STUDENT [table-name:STUDENT, name:NAME, social-security-number:SSN, birth-date:DOB,
address:ADDRESS, sex:SEX=-MALE[val:0l, FEMALE[val:1]l, grade-point-average:GPA,
advisor-number:ADV#, major:MAJOR]

(b) c-term Representation

Figure 3. Library database and c-term representation

Figure 3. Library database and c-term representation

3.3 Domain Knowledge Representation in c-terms

Representing the general knowledge and database-specific domain knowledge are
the inherent function of Li The collection of instantiation and classification assertion
construct a concept hierarchy knowledge base. Entity, event, and state c-terms that
we call the predication assertions described in 3.1 form the knowledge base also.
Concept hierarchies and the related domain knowledge base are very useful resources
in the conflict resolution process. Such kind of knowledge bases are constructed from
a machine-readable electronic dictionaryl5l and thesaurus prior to the conflict
resolution. So, concept hierarchies and domain knowledge represented in c-terms have
semantically-rich expressions on a natural language level.

Figure 4 depicts a c¢-term representation of a concept hierarchy knowledge base.

General and database-specific domain knowledge is in Figure 5.

Person /ITEM
Employee 7damt Likrary=-Item Factory-Ttem

Manager Tirecror Under Grad Book Micrefilm CD-ROM ™ Audic

MANAGER . EMPLOYEE BOOK . LIBRARY-ITEM

DIRECTOR . EMPLOYEE MICROFILM . LIBRARY ITEM

UNDER - STUDENT CD-ROM . LIBRARY-ITEM

GRAD - STUDENT TV . FACTORY-ITEM

EMPLOYEE . PERSON AUDIO . FACTORY-ITEM

STUDENT . PERSON LIBRARY-ITEM . ITEM

FACTORY-ITEM . ITEM

/Entity/
BOOKIcover:-HARD]

(Books whose cover is hard-bound.)

/State and Event/
OWNl[agent:KIM, object:BOOK([title:"Intelligent Database”,
author:PERSONI[name:"Chung”]]]

(Kim owns the book "Intelligent Database” authored by "Chung”.)

BORROW /[agent:STUDENT[name:JOE, address:"Storrs”],
object:BOOK [title:"Visual Languages”, author:”S. K. Chung”]]
(Student Joe who is living in Storrs borrowed the book "Visual

Languages” authored by "S. K. Chung”.)

Figure 5. General and domain knowledge representation in c-term

4. Application of the Extended Schema Representation

The extended schema representation method presented in the previous section can
be applied to various database application areas such as a schema representation
language, a multiple database integration, or a query manipulation. This section
illustrates the global schema construction algorithm for schemas represented in
c-terms, and illustrates a sample query processing. A formal and more complete
description of the algorithm is beyond the scope of this paper, and can be found in

[101.
4.1 Global Schema Construction

To integrate multiple databases, we devised a global schema construction

algorithm. Some assumptions are imposed in the algorithm: no homonym is allowed;

a synonym dictionary is used; all of the table and attribute names are fully

meaningful words. The condensed algorithm is described by the following steps:

1. Process the Composite Attribute Sets(CAS) to resolve the conflict in 1-to-n
attributes, and attributes-versus-table conflicts.

2. Process the Type Attributes(TA) to build a local concept hierarchy.

3. Resolve the table-versus-table conflict.

3.1 Construct the list of the pairs of entities having the same head labels or the
synonym head labels.

3.2 Construct a common entity c-term in the c-term library having only head labels,
and mapping c-terms for each local schema having the same head label.

3.3 Process the common attributes(attribute-versus-attribute) conflict.

3.4 Process the attribute- versus-table conflict.

4. Put the tables having no corresponding tables into the c-term and mapping c-term
library.

5. Build the domain concept hierarchies using the results from Step 1, 2 and the
concept hierarchy in the knowledge base.

6. Accomplish event/state c-terms with local table names using the event/state
c-terms stored in the knowledge base, and construct foreign key relationships

between the tables.

Step 1 through 3 are similar to the approaches in works that have been done by
other researchers. The remaining steps are a new attempt that use real world
knowledge such as concept hierarchy and relationship in case frame of a natural
language. The global schema constructed by the above algorithm is used for a

database integration.

4.2 Query Processing

A users query to a single or multiple databases can easily be represented using a

A users query to a single or multiple databases can easily be represented using a
simple GUI and c¢-terms. An example of the users query and its processing is shown

below.

(Query) What is the address of the person who borrowed the book “Visual
Language” authored by "S. K. Chung”?
For the above query to multiple databases, user input and system response will be

as follows:

(1) Select an event/state c-term in the knowledge base.

EORROW[agent:PERSON, object:LIBRARY-ITEM]

(2) Click the PERSON.
The system now shows the concept hierarchy of the person, then select the

FERSON and fill in

PERSON:
address:?

name: -

(3) Click the LIBRARY -ITEM.
The system now shows the concept hierarchy of the LIBRARY-ITEM, then
select the BOOK and fill in

BOOK:
auntheor-name:"S, K. Chung”
title:"Visual Language"”
subject: -

Query represented by c-terms can directly be translated into the SQL without any

5. Conclusion

There have been requirements for a standard form that is used for database
administrators to put Jocal database schema information in the database integration
module. In this paper, we have presented an extended schema representation
formalism which is developed to achieve a tight coupling of knowledge and data for
multiple database environment. We also showed a global schema construction
algorithm and a query processing in multiple database briefly as an example of
c-terms application.

The approach presented in this paper has some advantages. Knowledge base such
as the concept hierarchy and the relationship extracted from an electronic dictionary
1s a new approach. First, expressiveness of this schema and knowledge representation
methodology has almost the same power of semantic richness found in a natural
language level. Knowledge represented in c-terms performs an important role in
conflict resolution in the database integration. Second, database schema and related
domain knowledge are uniformly represented in c-terms. Third, this schema and
knowledge representation methodology can be used for a single database environment
as well. Finally, it also provides the easiness of query processing in the GUI
environment.

We are doing research on finding conflicts which are not necessary to resolve
when they are represented in c terms. Further work need to be done for integrating
the object-oriented database into a relational database environment. To do this,
representing in c-terms will be extended for object-oriented database schemas. In
order to cut down on intervention by a database administrator and user as much as
possible in the database integration, an automatic algorithm for detection and
resolution of conflicts will be studied. This future work will make for more intelligent

processing in the database integration.

—100—

6.

10.

11.

References

J. Allen, Natural Language Understanding, 2nd Ed., The Benjamin/Cummings
Publishing Company, Redwood City, CA, USA, 1995.

C. Batini, M. Lenzerini and S. B. Navathe, A Comparetive Analysis of
Methodologies for Database Schema Integration, ACM Computing Surveys, Vol
18, No. 4, pp.323-364, December 1986.

M. W. Bright, A. R. Hurson and S. Pakzad, Automated Resolution of Semantic
Heterogeneity in Multidatabases, ACM Transactions on Database Systems, Vol.

19, No. 2, pp.212-253, June 1994.

. B. C. Desai, An Introduction to Database Systems, West Publishing Company, St.

Paul, MN, USA, 1990.

EDR, EDR Electronic Dictionary Version 1.5 Technical Guide, TR2-007, Japan
Electronic Dictionary Research Institute, Ltd. 1996.
R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 2nd Ed., The
Benjamin/Cummings Publishing Company, Redwood City, CA, USA, 1994.

M. Garcia- Solaco, F. Saltor and M. Castellanos, A Structure Based Schema
Integration Methodology, Proceedings of 11th International Conference on Data
Engineering, Taipei, Taiwan, pp.505-512, March 1995.

W. Kim and). Seo, Classifying Schematic and Data Heterogeneity in
Multidatabase Systems, [EEE Computer, Vol. 24, No. 12, pp.12-18, December
1991.

J. S. Lim and D. G. Shin, Query Instance Generation for Multiple Database
Systems, Proceedings of ISCA 6th International Conference on Intelligent
Systems, Boston, USA, pp.135-139, June 1997.

J. S. Lim, C. H. Kim and D. G. Shin, Meta Data Construction Methodology for
Multiple Databases, Submitted to IADT 98, Germany, July 1998.

W. Litwin, L. Mark and N. Roussopoulos, Interoperability of Multiple Autonomous
Databases, ACM Computing Surveys, Vol. 22, No. 3, pp.267-293, September 1990.
E. Sciore, M. Siegel and A. Rosenthal, Using Semantic Values to Facilitate

Interoperability among Heterogeneous Information Systems, ACM Transactions on

—101—

13.

14.

15.

16.

Database Systems, Vol. 19, No. 2, pp.254-290, June 1994.

A. P. Sheth and J. A. Larson, Federated Database Systems for Managing
Distributed, Heterogeneous and Autonomous Databases, ACM Computing Surveys,
Vol. 22, No. 3, pp.183-236, September 1990.

D. G. Shin, Lk : A Language for Capturing Real World Meanings of the Stored
Data, Proceedings of IEEE 7th International Conference on Data Engineering,
Kobe, Japan, pp. 738-745, April 1991.

D. G. Shin, An Expectation-Driven Response Understanding Paradigm, IEEE
Transactions on Knowledge and Data Engineering, Vol. 6, No. 3, pp. 430-443,
June 1994.

G. Wiederhold, Mediators in the Architecture of Future Information Systems,

IEEE Computer, Vol. 25, No. 3, pp.38-49, March 1992.

—102—

