REBRHE Bk 2%
19974 11H 47

Genetic Algorithms with a Permutation Approach
to the Parallel Machines Scheduling Problem*

Yong Ho Han*™*

ABSTRACT

This paper considers the parallel machines scheduling problem characterized as a
multi-objective combinatorial problem, As this problem belongs to the NP-complete problem,
genetic algorithms are applied instead of the traditional analytical approach. The purpose of this
study is to show how the problem can be effectively solved by using genetic algorithms with a
permutation approach. First, a permutation representation which can effectively represent the
chromosome is introduced for this problem. Next, a schedule builder which employs the
combination of scheduling theories and a simple heuristic approach 1s suggested. Finally,
through the computer experiments of genetic algorithms to test problems, we show that the
niche formation method does not contribute to getting better solutions and that the PMX
crossover operator is the best among the selected four recombination operators at least for our

problem in terms of both the performance of the solution and the operational convenience.

1. Introduction

Generally, production scheduling problems are considered as one of the hardest combinatorial problems
because they belong to the class of NP-complete problems. Therefore, a crucial task of scheduling is
the creation of near-optimal schedules without searching through the entire problem space, Meanwhile,
genetic algorithms (GAs) have recently gained considerable popularity as general-purpose robust
optimization and search techniques(6,7.9.141. In the field of the scheduling GAs have successfully
solved different production scheduling problems over the last ten years{3]. Nevertheless, in many

industries, there is frequently no ideal method for the scheduling to the extent that some

¥R ATE dUEFEAEY P9S wol 19959 8¥ K E 19964 8¥7bA u|= State University of New York at Buffalo
NA FYHUS.
** Department of Management Information Systems, Pusan University of Foreign Studies

48 Yong Ho Han g B!

shop-floors may commonly schedule operations using rules of thumb. The scheduling problem at the
steel cutting shop in shipbuilding yard is a typical example of such problems. The motivation of our
study originally stems from the need for an efficient algorithm to the scheduling problem in this type
of shop.

There are a few previous studies that are closely related to our study. Suresh & Chaudhuri[16]
consider the problem of scheduling n jobs, all requiring a single stage of processing, on m unrelated
parallel machines. There are two objectives: to minimize the makespan and to minimize the maximum
tardiness. A tabu search based algorithm is suggested for this. Fang et al.[5] introduce a GA approach
for the job shop scheduling problem. The approach uses a variant of the ordinal representation used for
traveling salesman problem. Hou et al.[10] apply GAs to solve the multiprocessor scheduling problem.
The representation of the chromosome is based on the order of the operations being executed in each
individual processor. Kobayashi et alf11] present a method based on GA for solving job shop
scheduling problems. They suggest a new crossover operator. Bierwirth et al[2] solves the job shop
problem with GA. A new permutation representation is suggested. In all of the four studies given
above a single objective function is used. Stanley & Mudge[15] present GAs as an optimization
approach to a multi-objective microprocessor design problem. Shaw and Fleming[13] demonstrate the
application of a pareto optimal multi-objective GA. Major characteristics of these previous studies are
summarized in Table 1.

Unlike these, in this paper a problem characterized as a bicriteria scheduling problem is solved by
GAs. It is generally recognized that some of the GA components such as the chromosome
representation, the type of crossover operator, and the niche formation method greatly affect the
performance of GAs. The purpose of this study is to suggest an effective representation method of
chromosome and to identify the combination of crossover operators with/without niche formation
method which generates the best performance of solution to the given problem. In section 2, the target

problem is described. In section 3, an effective representation of permutation-type is suggested for

Table 1. Summary of Previous Researches

Scheduling Multi-objective .
Problem Problem GA Applied

Suresh & Chaudhuri [16] yes yes no
Fang et al. [5]
Hou et al. [10] es o
Kobayashi et al. [11] v ho v
Bierwirth et al. [2]
Stanley & Mudge [15] o o e
Shaw & Fleming [13] 4 v

Flak H25% Genetic Algorithms with a Permutation Approach to the Paralle] Machines--- 49

encoding the chromosome. In section 4, four types of crossover operators and a niche formation method
are described. In section 5, test problems are solved under different combinations of crossover operator
with/without niche formation method. Computational results are analyzed. Finally in section 6, some

concluding remarks are made.

2. Problem Description

In this paper a bicriteria formulation for the scheduling of unrelated parallel machines is considered. It
is assumed that there are n jobs, all available initially, and m machines are available throughout the
scheduling period. Each job has a due date. Only one operation is needed to complete processing of a
job. Any machine can process any job but with different processing time. No preemption of b is
allowed and a machine can process only one job at a time. Under this environment we should
determine for each job both the machine it is assigned to and the start time (or completion time) of it
which minimize both the makespan and the maximum tardiness. To describe the problem more clearly,

we formulate it as an integer linear program with two objectives. The following notation is used in the

formulation.
Indices
? machine i€ I={1,2, ..., m}
J obje/={(1,2,...,n}
Parameters

p; processing time of job j on machine ¢

d; due date of job s

Decision Variables

C; completion time of job j

Cax makespan

T; tardiness of job j

T ax maximum tardiness

X; =1if obj is assigned to machine z, and 0 otherwise.

Three different approaches have been adopted in the scheduling literature for considering multiple
criteria[161: (a) Both of the criteria are considered in the objective function as a weighted sum of the
two criteria. This approach considers the trade-off between conflicting objectives. (b) The criteria are
considered explicitly as objective functions. This approach generates the so-called efficient solution

set[7] and the best solution is derived from this set. (¢) One of the two criteria acts as the objective

50 Yong Ho Han HERE

function and the other as a constraint. In this paper the first approach mentioned earlier is taken. So
two objective functions are combined into a single objective function as given below:
Minimize w;Cpax + Wo T max
where w) and w, denote weights for the makespan and maximum tardiness, respectively.
Makespan is defined as
Crax = max{C;| i€l}.
Tardiness of job) is defined as
T;= max (0, C;— d})
and T e = max{T;| j&]}.
Therefore, the mathematical model for our problem is given as follows:
Minimize w;Cpax + WoT max -
subject to zj:p,;X,-,-S Cmax for 1=1,2,...,m, (1)

inj=1 for j=1,2,...,7, (2)

and X;={0,1} for all ¢,7. (3)

In the formulation, constraint set (1) states that the completion time of each machine should be less
than or equal to the makespan. Constraint set (2) ensures that each of the jobs should be assigned to

one of the machines,

3. Permutation Representation

The selection of an appropriate chromosome representation of candidate solutions to the problem at
hand is the foundation for the application of GA to a specific problem. In this section an efficient
representation whose characteristics can be defined to be domain-independent, indirect, and of
permutation type is suggested for the chromosome of the problem, based on theories of the parallel

machines scheduling. The corresponding schedule builder is introduced.
3.1 Problem-Specific Knowledge

It is necessary to introduce the exact meanings of some problem-specific knowledges. Assume that

Job Jj arrives in the shop at time #; and that machine / is firstly available for processing at time a,
When all »; are 0, we define the situation as the static job arrival. When all a; are 0, we define it

as the static machine availability. When both #; and @; are static, it is defined as the static case.

Flak 2% Genetic Algorithms with a Permutation Approach to the Parallel Machines- - 51

When both are dynamic, we define it as the dynamic case. In a mixed case, we specify which is
static and which is dynamic. When all machines are equal, that is, p;=p,. for all i, such a situation
is defined as the equal parallel machine case, When all machines differ from each other only by

constant speed factors, that is, p;= p,-/ s;, where §s; is the speed factor for machine 7 it is defined
as the proportional parallel machine case, Finally, when the p; are arbitrary, it is defined as the
general parallel machine case, Objective functin Z= AW, Wy, ..., W,) is defined to be regular

when Z will increase only if at least one W, increases. Problem specific knowledges for the problem

can be described by the follwing three Propositions, as in [12].

Proposition 1 Consider a general parallel machine problem with dynamic arrivals, dynamic
availability, and regular objective function. There is an optimal solution of the form: sequence the n
jobs in an optimal order (method for obtaining optimum order is not known) in a list, and schedule
each in turn on the machine that can finish it first.

Proposition 2 For the static single machine problem with minimizing maximum lateness as the
obective, there is an optimal policy satisfying d; < dy < .. < d, (this is called EDD, the “earliest
due date rule”).

Proposition 3 The maximum lateness objective and the maximum tardiness objective are both
minimized by the same policy. Thus for the static case EDD minimizes maximum tardiness as well.

From proposition 1 the general parallel machine problem is reduced to a one dimensional sequencing
problem. Propositions 2 and 3 are exploited when sequencing of jobs are made on each machine to

minimize the maximum tardiness (i.e., the second objective function).
3.2 Chromosome Representation

It would be helpful to retrospect the previous representational schemes research on scheduling before
we design the chromosome representation for our problem. The representational schemes of previous
GA-based research on sgheduling can be classified into three types as follows[3]:

a) Domain-independent indirect representation: It contains no auxiliary information regarding the
particular domain. Since the representation does not represent a schedule, a transition from
chromosome representation to a legal production schedule has to be made by a schedule builder
prior to evaluation. Common recombination operators that are also applicable to other domain
problems are applied.

b) Problem-specific indirect representation: Knowledge of the problem domain is explicitly represented

52 Yong Ho Han S

in the chromosomes. In order to work on the resultant expanded representation, new
domain-dependent genetic operators have to be designed.

c) Direct representation: The production schedule itself is used as a chromosome. No decoding

procedure 1s therefore necessary.

In another respect, the representation can also be classified into two types, binary representation and
permutation representation. According to which representation is used, the genetic operator to be used
should be different.

To apply GAs ideally, the following criteria should be satisfied[11].

a) Completeness: Any solution should have its encodings.

b) Soundness: Any code produced by genetic operators should have its corresponding solution.

¢) Non-redundancy: Codes and solutions should correspond one to one.

d) Characteristics-preservingness: Children should inherit useful characteristics from parents.

If it is impossible to represent a problem with standard coding techniques in a way that infeasible
solutions cannot get into the coding scheme, one type of remedy could be used among the three given
below[1].

a) A detected infeasible genotype can be penalized with a relatively bad fitness value to drive the

individual out from the population.

b) A detected infeasible genotype can be transformed into a similar feasible genotype by a small

modification of the string representation.

¢) A non-standard representation can be designed, which avoids the coding of infeasible solutions, If

ordinary genetic operators destroy the scheme-structure of the representation, new operators (at
least a crossover) preserving this structure, have to be developed.

Now we represent a chromosome for the problem as a permutation. A permutation is defined as an

ordering of the elements of a finite job set J of size n. A permutation is for example given by
(P, Py, ..., P,),
where P; denotes the jth job of a job order which is referred to in Proposition 1. The number of

different permutations is equal to n!.

This representation is actually the result of applying the problem-specific knowledge (Proposition 1)
to the problem. But, the representation literally looks like a domain-independent indirect representation
because of the contents of Proposition 1. So we do not need to design a new genetic operator, but use
one of the conventional permutation operators.

In view of proposition 1, we see that the representation is complete, sound and non-redundant.
Charateristic-preservingness of GA can be obtained later in the process of choosing a crossover

operator, The schedule builder in Section 3.3 always transforms each permutation into a corresponding

Flak FE2% Genetic Algorithms with a Permutation Approach to the Parallel Machines--- 53

feasible solution by utilizing propositions 1, 2 and 3. Therefore, any type of remedy to avoid generating

infeasible solutions must not be taken any more.
3.3 Schedule Builder

A schedule builder should make a transition from chromosome representation to a legal production
schedule and evaluate its performance. It should be chosen with respect to the performance measure of

optimization. Based on the three propositions in Section 3.1, the schedule building procedure for a string

is described as follows: It is assumed that # jobs are already assumed to be sequenced in an order
(]1’12’ °~~y]n)~
Step 1: Assign the job J; on the machine that can finish it first, for j=1,2,..., 7.

Step 2: The makespan is derived from the equation Cpa = max{C;| i€l}.

Step 3: Sort the jobs assigned to macine ¢ in ascending order of the due date d;, for

1=1,2,...,m.
Step 4: The maximum tardiness is derived from equations
T;=max (0, C;— d;) and Toax = max{T;| j€] }.
Step 5: Obtain the value of the objective function from @) Cmax + W3 T max.

4. Crossover Operator and Niche Formation

Several crossover operators for permutation have been suggested. Among them four operators given
below have been frequently used: partially matched crossover (PMX), order crossover (OX), cycle
crossover (CX), and uniform order-based crossover (UOBX). For a detailed information of these operators,
see Davis[4] and Goldberg[7]. Unfortunately it is not known which operator is the best and how much
differences in solution performance exist among these four crossover operators for our problem,

Often the crossover operator is too strong and it ends up driving the GA to create a population of
individuals that are almost exactly the same. When the population consists of similar individuals, the
likelihood of finding new solutions typically decreases. On one hand we want the GA to find good
individuals, but on the other hand we want it to maintain diversity. One of the most common methods
for maintaining diversity is to form niches through De Jong style crowding. De Jong style crowding is
basically the same thing as replace-most-similar replacement scheme, When new offsprings are created,
they replace the individuals in the population that are most similar to them. If the niche formation is
induced for a multi-modal function in GA, then the domain would be explored more effectively. We

want to identify how much difference exists in solution performance between the method with niche

54 Yong Ho Han sEps

formation and that without it.

Depending upon the combination of which operator is used and whether a niche formation method is
used or not, the performance of GA to a given problem could vary significantly., To identify the best
crossover operator and to decide if we should apply the niche formation method or not, we need to

simulate GA under each combination of the two factors levels for some test problems

5. Computational Results

5.1 Test Problems

The test problems are generated from the combination of three different number of jobs (20, 40 and
80) and three different number of machines (3, 5 and 10). The job processing time is sampled from
uniform distribution [1, 100] or [50, 100]. The due dates are computed using two parameters: the

tardiness factor f, where 0<f<1 and the range factor r, where 0<r<1, as is the case in Suresh and
Chaudhuri[16]. The due date dj for a ob J is sampled from the uniform distribution in the range

{d-w/2, d+w/2], where d and w are computed as given below:

d=E(p)(A — Hn/m,

where E(p) is the mean processing time.
_ . w=(7/m) 21),-*,
where p;*= min{p; | 1<i<m}. =

The values of the two factors f and r are selected such that the due dates are generated with
varying degree of tightness. In detail, the values are set to as follows: tardiness factor f = 05 or 0.8
and range factor r = 05 or 0.8. Specifications of the resulting nine test problems are described in
Table 2.

Table 2. Specification of Nine Test Problems

Problem ID Numbgr of Number of Jobs | Processing Time f Value r Value
Machines
1 3 20 Ul1, 100] 05 0.5
2 3 40 U[50,100] 0.5 038
3 3 80 U1, 100] 0.8 0.5
4 5 20 U[50,100] 0.8 0.5
5 5 40 U[1, 100] 05 0.5
6 5 80 U[50,100] 05 0.8
7 10 20 U[1, 100] 0.8 0.5
8 10 40 U50,100] 0.5 0.8
9 10 80 U[1, 100] 0.5 0.5

Blak 2% Genetic Algorithms with a Permutation Approach to the Parallel Machines--- 55

5.2 Design of Experiment

For each of the nine test problems, GA control parameters are set to be as follows: the crossover
rate is set to 0.6 and the mutation rate is set to 0.01. The size of the population is set to be equal to
the number of jobs for the problem. The stochastic remainer selection method{7] is adopted as a
selection scheme. The swapping mutation operator, which swaps two randomly selected fields from a
permutation-type chromosome, is applied here. The elitism is adopted. An execution of GA is
terminated when either the convergence ratio of alleles in the population is over 95% or the maximum
allowable number of generations (here it is set to the 5000th generation) has been reached.

The purposes of experiment are to identify the best crossover operator among the four different
types of crossover operators (ie, PMX, OX, CX and UOBX) and to make decision about whether we
should apply the niche formation method or not (ie, YES, NO). We experiment with the model of
the three-way factorial design. We define the first factor of our experimental design to be the type of
crossover operators, The levels of the first factor are composed of PMX, OX, CX and UOBX. The
second factor is defined to be the alternative of decision making about niche formation. The levels of
the second factor are composed of YES and NO. For the purpose of the experiment, a third factor is
defined to be the type of the test problem. The levels of the third factor are composed of nine
problems, from problem 1 through problem 9. Both the first and the second factor belong to the fixed
factor. But the third factor {problem type) is a random factor. The experiment is repeated three times
under each of the total 72 (= 4 x 2 x 9) combinations of the three factors, by changing only the
value of the initial random seed. GALOPPS (Genetic ALgorithm Optimized for Portability and
Parallelism System)[8] is selected as the software package with which our GA is implemented. The
schedule builder and other required modules are coded in C in GALLOPS. Simulations are implemented

on a personal computer under a UNIX environment.

5.3 Analysis of Results

Both the obtained solution and the number of created generations for each of 216 implementations
are summarized in Table 3.

Notice that without the exception for the OX operator, GA continued untii the maximum allowable
number of generations was reached. The number of generations created during the execution of GA
varies significantly depending on the operator used for a given problem. To evaluate the performance
of each combination of the two factors (type of crossover and decision making about speciation), the
performance of solution and the number of generations created are selected as the first and the second

criterion respectively.

56 Yong Ho Han R
Table 3. Solution and Number of Generations for Each Implementation
PMX CX 0OX UOBX
Value |Gen. no.| Value |Gen. no.| Value |Gen. no.| Value |Gen, no.

1st 985 7 1055 16 9% nc 96 122

Y | 2nd 97 65 97 11 9% ne 97 203

Probiem 1 3rd 96 49 1025 12 9% nc 96 179
roblem Ist % % 9% % % nc 9% 63
N | 2nd 97 48 985 23 96 nc 97 114

3rd 9% 58 1005 275 9% nc 96 111

1st 5075 335 512 18 4825 nc 4815 nc

Y | ond 4955 299 505 27 4845 nc 4775 nc

Problem 2 3rd 4345 919 5155 27 4875 nc 4795 nc
roblem Ist 4915 363 520 3] 4775 nc 476 4122
N | 2nd 4915 153 523 22 480 nc 474 516

3rd 488 147 5195 29 48] nc 481 479

1st 5185 nc 539 63 524 nc 5245 nc

Y | ond 5165 nc 556 46 5205 ne 526 nc

Problem 3 3rd 512 nc 552 36 5125 nc 523.5 nc
roblem Ist 5155 2392 5415 89 5255 nc 5205 ne
N | 2nd 5135 2000 539 32 5125 nc 520 ne

3rd 519.9 2263 554 47 517 nc 523 ne

Ist 2105 43 211 29 201 nc 208 155

Y | 2nd 206 181 2225 1 201 nc 208 177

Broblemn 4 3rd 201 4 2185 19 201 nc 201 134
robiem Ist 2065 33 2095 45 201 nc 201 66
N | 2nd 207 55 208 21 201 nc 205 90

3rd 208 49 216 104 201 nc 208 106

1st 69 561 73 33 69 ne 69 4076

Y | 2nd 70 709 72 15 68 ne 69 4521

Problom 5 3rd 69 177 745 23 685 nc £9 522
foblem Tst 69 154 73 41 695 ne 69 541
N | 2nd 69 132 73 108 68 ne 69 630

3rd 70 204 735 24 68 nc 68 304

1st 558 nc 605.5 33 571 nc 564.5 nc

Y 2nd 557 nc 603 117 556 nc 566 nc

Problemn 6 3rd 557 nc 599.5 51 569 nc 5745 nc
roblem Ist 5545 nc 5935 44 566 nc 571 nc
N 2nd 561 nc 584.5 85 569.5 nc 556 nc

3rd 560.5 nc 590.5 59 551 nc 564 nc

Ist 225 99 2 17 25 ne 225 248

Y | 2nd 225 67 275 94 225 ne 25 418

Problemn 7 3rd 25 86 25 90 225 nc 25 462
roblem Ist 25 63 2 46 225 nc 24 50
N | 2nd 225 37 24 47 25 ne 24 99

3rd 225 63 225 36 225 nc 225 194

Ist 153 217 1605 23 1475 nc 1415 862

Y | 2nd 1485 185 170 21 150 nc 1505 834

Probiom 8 3rd 150 199 1575 79 150 nc 145 2261
foblem Tst 1475 288 161 2% 1485 nc 148 834
N | 2nd 1525 210 153 22 1405 ne 144 983

3rd 146 218 1635 2% 144 ne 148 333

1st 485 nc 52 55 495 nc 46.5 nc

Y 2nd 475 nc 51 46 495 nc 465 nc

Problem 9 3rd 47 nc 52.5 41 495 nc 47 nc
Ist 475 1922 55 50 485 nc 465 nc

N | 2nd 465 2979 50 109 49 ne 47 ne

3rd 475 2140 51.5 82 495 nc 47 nc

t nc means the experiment was not converged but continued to the 5000th generation,

Flak B2

Genetic Algorithms with a Permutation Approach to the Parallel Machines---

57

Table 4. ANOVA Table

Source DF SS MS F Value Pr>F
Model 36 9542094.9 2650582 17772.88 0.0001
Error 179 2669.5 14.9

Corrected Total 215 9544764 4

Source DF SS MS F Value Pr>F
OPERATOR 3 8432.2 2810.7 188.47 0.0001
PROBLEM 8 9526323.1 1190790 .4 79845.76 0.0
CROWDF 1 109.1 109.1 7.31 0.0075
OPERATOR*PROBLEM 24 72305 301.3 20.20 0.0001

As a first step, variance is analyzed for the data in Table 3 to evaluate only with the first criterion
(the solution performance). The result of the variance analysis is shown in Table 4.

From Table 4, we see that each of the three factors (the problem type, the crossover type and the
crowding factor) and the interaction effect between “the problem type” factor and “the crossover
type” factor are highly significant. As expected, “the problem type” factor is highly significant, since
the scales of the input data were set to differ significantly among the problems. The high significance
of “the crossover type” factor means that there exists a high significant difference in the solution
performance between at least a couple of crossover operators, As “the niche formation” factor is
significant, the Tukey’s Studentized range test is subsequently implemented. The result of the test
shows that the niche formation method aggravates somewhat the performance on the average of
solutions, contrary to the generally known effect of the speciation. The phenomenon might be due to
the difficulty of adjusting control parameters to diversify chromosomes in the population. To get more
detailed information about superiority among different operators, multiple comparisons were made by
implementing the Tukey's Studentized range test using the SAS package. As the interaction effect
between “the problem type” factor and “the crossover type” factor is highly significant, the Tukey's
test is implemented for each level of “the problem type” factor. The result of implementation is
summarized in Table 5.

From Table 5 we cannot discriminate the best operator among PMX, OX and UOBX operators,
because the operator whose performance is superior to others, differs depending upon the problem and
the performances of all the three operators are approximately the same. Meanwhile, the operator CX is
somehow inferior to these three operators. The inferiority of the CX operator could be explained in part
by the fact that the number of generations created under CX operator until convergence is much less
than other operators and that accordingly CX operator has less opportunity of searching the domain
than the others.

The previous comparisons are based on the solution performance. Now another comparison is made

58 Yong Ho Han HEfLg

Table 5. Results of Tukey's Studentized Range Test

roblem levels of operator

P PMX CX OX UOBX
] mean 96.75 100 96* 96.33
SD 0.99 3.58 0.00 0.52
9 mean 493,08 515.83 482.17 478.25*
SD 7.98 6.55 3.52 2.95

3 mean 515.83* 546.91 518.67 522.92
SD 2.75 791 5.61 2.31

4 mean 206.5 214.25 201.00* 205.1
SD 3.13 5.68 0.00 3.43

5 mean 69.33 7317 68.50* 68.83
SD 0.52 082 0.63 0.41
6 mean 558.00* 596.08 563.75 566.00
SD 243 8.00 8.26 6.38

7 mean 225 * 24.08 225 * 23.00
SD 0.00 1.83 0.00 0.77
8 mean 149.58 160.91 146.75 146,17*
SD 2.78 572 3.78 3.27
9 mean 474 52.00 49.25 46.75*
SD 0.66 1.70 042 0.27

Asterisk (*) is marked in the cell which corressponds to the operator under which the best solution
was generated.

based on the second criterion (the number of generations created) for the three operators (OX, UOBX
and PMX), showing nearly the same performances. Among the three operators, there is a large
difference in the number of created generations to obtain the solution in Table 3 for a problem. From
Table 3, we can see that less generations were created under PMX operator until convergence than
under UOBX operator for almost all the problems (except one problem), while the two corresponding
solutions from both PMX and UOBX are nearly the same. Therefore we can conclude that the PMX
operator is definitely superior to the UOBX operator.

Finally, it remains undetermined as to which operator is superior betweeen PMX and OX. The
sequence of solutions under OX operator never converges due to the property of the operator itself.
That is, GA is executed until the maximum allowable number of generation (5000th generation) has
been reached. This property of OX operator lets the direct comparison difficult to be made. So we
make an indirect comparison as follows:

A couple of solutions from under both PMX and OX at a designated generation are derived for each
problem and are summarized in Table 6. The generation at which the sequence of solutions begin to

converge above 95% under PMX operator is designated.

=4 25 Genetic Algorithms with a Permutation Approach to the Parallel Machines--- 59

Table 6. Solutions under PMX and OX at a Given Number of Population

Solution under PMX Gen. no. Solution under OX
1st 2nd 3rd Ist 2nd 3rd 1st 2nd 3rd
Problem 1 Y 98.5 97 96 71 65 49 97 96 97
N 96 97 96 26 48 58 97 96 96
Problem 2 Y 5075 4955 4845 335 299 919 500 4845 4915
N 4915 4915 488 363 153 147 492 5015 502
Problem 3 Y 5185 5165 512 nc nc nc 524 520.5 5125
N 5155 5135 5199 2392 2000 2263 5255 5125 517
Problem 4 Y 2105 206 201 43 181 42 208 204 208
N 2065 207 208 33 55 49 2075 208 210
Problem 5 Y 69 70 69 561 709 177 70 69 70.5
N 69 69 70 154 132 204 70 715 70
Problem 6 Y 558 557 557 nc nc nc 571 556 569
N 5545 561 560.5 nc nec nc 566 569.5 551
Problem 7 Y 225 22.5 225 99 67 86 225 22.5 22.5
N 22.5 225 225 63 37 63 22.5 22.5 225
Problem 8 Y 153 1485 150 217 185 199 153 150 150
N 1475 152.5 146 288 210 218 1485 153 154
Problem 9 Y 485 475 47 nc nc nc 495 495 495
N 475 46.5 475 1922 2979 2140 485 49 495
240.9 mean 2429

+ nc means that the sequence of solutions did not converged but
continued to the maximum allowable 5000th generation in the experiment.

From Table 6, we see that means of solutions under both operators are nearly the same. (2409 for
the PMX and 2429 for the OX) But the OX operator has a serious shortcoming that we cannot know
in advance when to stop the execution of GA, because OX operator itself does not permit the
convergence of solutions, Therefore we conclude that PMX crossover operator is the best for our

problem with respect to both the performance of solution and the operational convenience.

6. Conclusion

In this paper the parallel machines shop scheduling problem was considered as a representative of the
multi-objective combinatorial problems, A permutation representation which can effectively represent
the chromosome was introduced. An efficient schedule builder was made by employing both the theory
of the exact analysis and a simple heuristic. Next we showed through simulations that the niche
formation method through the crowding factor does not contribute to obtaining better solutions and

that the PMX operator is the best crossover operator for our problem in view of the performance of

60 Yong Ho Han pufeg S8

solution and the operational convenience.

Traditionally scheduling problems were investigated in the area of operations research, from which
comprehensive research results are available. Therefore as a topic for further research, it is worthwhile
to study a number of useful ways by which the conventional optimization theory can be exploited in
the process of applying GAs such as chromosome representation or searching the domain space of GAs.
On the other hand, more efforts are required to reveal the characteristics of the various types of
crossover operators and thus to make possible the choice of more adequate operator for a given

problem.

References

(1] Bierwirth, C, “A Generalized Permutation Approach to Job Shop Scheduling with Genetic
Algorithms”, OR Spectrum, 17, (1995), pp. 87-92.

(2] Bierwirth, C., Mattfeld D. C. and Kopfer, H, “On Permutation Representations for Scheduling
Problems”, Research paper, Dept. of Economics, University of Bremen, Germany, 1996.

(3] Bruns, R, “Direct Chromosome Representation and Advanced Genetic Operators for Production
Scheduling”, Proceedings of International Conference on Genetic Algorithms, (1993), pp.352-359,

[4] Davis, L., “Handbook of Genetic Algorithms”, Van Nostrand Reinhold, New York, 1991,

[5] Fang, H. Ross, P. and Corne, D., “A promising Algorithm Approach to Job-Shop Scheduling,
Rescheduling, and Open-Shop Scheduling Problems”, Proceedings of International Conference on
Genetic Algorithms, (1993), pp.375-382.

(6] Filho, J. L. R, Treleaven, P. C. and Alippi, C., “Genetic-Algorithm Programming Environments”.
Computer, 27, (1994), pp.28-43.

(7] Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, 1989.

(8] Goodman, E. D, “An Introduction to GALOPPS (The “Genetic ALgorithm OPtimized for
Portability and Parallelism” System) Release 3.01, Technical Report #95-06-01, Michigan State
University, East Lansing, 1995.

(9] Han, Y. H and Ryu, K. R, “Genetic Algorithms for Optimization: A Case Study of
Machine-Part Group Formation Problems”, Korean Management Science Review, 12(2). (1995).
pp.105-127.

[10] Hou, E. S. H., Ansari, N. and Ren, H, “A Genetic Algorithm for Multiprocessor Scheduling”,
IEEE Transactions on Parallel and Distributed Systems, 5(2), (1994), pp.113-120.

{111 Kobayashi, S., Ono, I and Yamamura, M., An Efficient Algorithm for Job Shop Schedulings
Problems, Proceedings of International Conference on Genetic Algorithms, (1995), pp.506-511.

Hlak HE2E Genetic Algorithms with a Permutation Approach to the Parallel Machines-:- 61

[12] Morton, T. E. and Pentico, D. W., Heuristic Scheduling Systems, John Wiley & Sons, 1993.

[13] Shaw, K. J. and Fleming, P. J., “Initial Study of Multi-Objective Genetic Algorithms for
Scheduling the Production of Chilled Ready Meals”, Research Paper, Automatic Control &
Systems Engineering Department, University of Sheffield, Sheffield, UK, 1996.

[14] Srinivas, M. and Patnaik, L. M, “Genetic Algorithms: A Survey”, Computer, 27 (1994},
pp.17-26.

[15] Stanley, T. J. and Mudge, T. A Parallel Algorithm for Multiobjective Microprocessor Design
Problems, Proceedings of International Conference on Genetic Algorithms, (1995), pp.597-604.

(16] Suresh, V. and Chaudhuri, D.. “Bicriteria Scheduling Problem for Unrelated Parallel Machines”,
Computers and Industrial Engineering, 30, 1, (1996), pp.77-82.

